
Valentina Piantadosi

On the Evolution
of the Code Readability

PhD Thesis
University of Molise, Italy

May, 2022

University of Molise
Department of Biosciences and Territory

Ph.D. Course in Biosciences and Territory
XXXIV Cycle

S.S.D. ING-INF/05

Ph.D. Thesis

On the Evolution of the Code Readability
Ph.D. Coordinator Tutor

Prof. Giovanni Fabbrocino Prof. Rocco Oliveto

Ph.D. Candidate
Valentina Piantadosi

Academic Year 2020/2021

v

Abstract

Code reading is an activity frequently performed by developers. Before modifying
code, developers have to read it, especially if it was authored by others.

Several studies have been carried out to find insights related to code readability.
However, they were mostly conducted on single (static) code snippets, i.e., they
did not take into account the ever-changing nature of software. In a preliminary
study, we observe that refactoring operations performed by developers to improve
several non-functional aspects of open-source software systems often result in

improved code readability.
Motivated by such results, in this thesis, we studied code readability in the

context of software evolution. Especially, we aimed at understanding: (i) to what
extent software developers are interested in code readability; (ii) how code

readability evolves in complex software systems; (iii) the influence of developers’
personal characteristics on the evolution of code readability.

First, we observed that the large majority of the developers we surveyed reported
that they consider readability as an important aspect of the source code. Then,

by mining several software repositories we observed that readability rarely
changes in software evolution. Therefore, files created unreadable rarely become
readable, and vice versa. Finally, we noticed that some personal characteristics of
developers have an impact on code readability. In particular, developers’ orienting
network (related to their attention) positively correlates with code readability.

Contents

1 Introduction 1

I Background & Related Works 5

2 Software Refactoring 8
2.1 Refactoring Practices . 9
2.2 Motivations and Actions behind Refactoring Operations 9
2.3 The Impact of Refactoring on Quality Metrics 11
2.4 Refactoring and Other Software-Related Activities 12

3 Source Code Readability 14
3.1 Code Readability . 15
3.2 Software/Code Understandability 17

4 Cognitive Human Factors 21
4.1 Psychological Notions . 21
4.2 Relation between cognitive aspects and task performance 23
4.3 Cognitive Human Aspects in Software Engineering 24

vi

CONTENTS vii

II Code Readability Improvement & Evolution 27

5 Why Do Developers Improve Source Code Quality? 30
5.1 Introduction . 31
5.2 Design of the Study . 33
5.3 Results . 45
5.4 Threats to Validity . 66
5.5 Final Remarks . 68

6 Do Developers Care about Code Readability? 70
6.1 Introduction . 70
6.2 Design of the Study . 72
6.3 Results . 73
6.4 Threats to Validity . 76
6.5 Final Remarks . 77

7 Readability Evolution in Open Source Projects 79
7.1 Introduction . 80
7.2 Modeling Code Readability Evolution 82
7.3 Study I: Validation of Readability Prediction in Software Evolution 86
7.4 Study II: Readability Evolution . 96
7.5 Threats to Validity . 118
7.6 Final Remarks . 122

III Code Readability & Cognitive Human Factors 125

8 Can Cognitive Human Factors Affect Code Quality? 128
8.1 Introduction . 129
8.2 Cognitive Factors and Software Development Tasks 132
8.3 Design of the Study . 134
8.4 Results . 147
8.5 Threats to Validity . 155
8.6 Final Remarks . 158

viii CONTENTS

9 Conclusion 160

Appendices 168

A Publications 168
A.1 Other Publications . 168

List of Figures

5.1 Characteristics of the 150 projects used in our study 35
5.2 Motivations behind refactoring operations 51

6.1 Distribution of the answer to demographic questions. 74
6.2 Distribution of the answers to Q1, Q2, and Q3. 75
6.3 Distribution of the answers to Q4. 75

7.1 States of a source code file. 85
7.2 The process we used to compute the transition probability of a

project. 97
7.3 Process of Study I and Study II. 100
7.4 Adjusted boxplots of files changed, lines changed, lines added and

lines removed for each group (without outliers). 106

8.1 Example of an injected bug in the easy task. We decide to remove
the hash map m2 from the originally correct solution. 135

8.2 Demographic information about the participants. 138

ix

x LIST OF FIGURES

8.3 Relationships between the independent variables (y axis) and de-
pendent variables (x axis). We use scatter plots for continuous
variables and box plots for binary ones. o and � indicate task type
(bug fixing and feature implementation), while and � indicate the
task difficulty (easy and hard). 146

8.4 Boxplot of readability values related to feature implementation tasks.148

List of Tables

5.1 Quality Metrics (Product-related factors) 37
5.2 Code Design Flaws (Product-related factors) 39
5.3 Process-related factors . 41
5.4 Generalized mixed effect logistic regression model: diagnostics,

residuals, and random effect . 46
5.5 Generalized mixed effect logistic regression model: effect of consid-

ered factors . 47
5.6 Statistics of refactoring operations labeled in the 551 analyzed PRs. 50
5.7 Comparison with refactoring motivations found by Silva et al. [208] 54

7.1 Projects considered in our study. 87
7.2 Datasets used in the first study. 93
7.3 Confusion matrix on the whole evaluated sample 94
7.4 Performance of the tool in transition classification. 94
7.5 Dataset used in the second study. 96
7.6 Mean readability evolution probabilities and 90% confidence inter-

vals of the bootstrap subsamples (file introduction). 102

xi

xii LIST OF TABLES

7.7 Mean readability evolution probabilities and 90% confidence inter-
vals of the bootstrap subsamples (file evolution). 103

7.8 Files always readable, always unreadable or both readable and
unreadable in the revision history of the projects. 105

7.9 Comparison of characteristics of the commits (number of files and
lines changed) among different transaction types. 106

7.10 Comparison on the subset with Wilcoxon rank-sum for various
groups. 108

7.11 Comparison on the subset with Wilcoxon rank-sum for various
groups. 109

8.1 Tasks selected for the experiment. o and � indicate task types
(bug fixing and feature implementation), while and � indicate
task difficulties (easy and hard). 137

8.2 Task assignment for each group. o and � indicate task types (bug
fixing and feature implementation), while and � indicate task
difficulty (easy and hard). 144

8.3 Spearman rank correlations ρ between independent variables and
dependent ones (significant correlations in bold). 147

8.4 Explanatory models for correctness, time and readability. For mini-
mal models, we report the step of backward stepwise elimination at
which each marginally relevant independent variable was removed.
For each model, we also report AIC, R2, and R2

m. 150
8.5 Comparisons between independent variables in groups (correct vs

incorrect for RQ1, time-up vs non-time-up for RQ2, and readable
vs unreadable for RQ3) using Mann-Withney (†) and Fisher (‡) tests.152

CHAPTER 1

Introduction

Code reading is one of the most frequent activities performed by developers.
Developers have to read (and comprehend) the code, before modifying it. Erlikh
[86] demonstrated that developers spend more time in their maintenance activities
than to write code from scratch. Given the importance of code readability,
researchers have investigated the factors that could influence code readability
[146, 164, 48]. Subsequently, these factors have been used to construct new models
to automatically assess code readability [59, 181, 80, 200, 199], in particular, and
code quality, in general.

In a preliminary study conducted to understand what the real motivations
that push developers to perform refactoring operations are [171], we observed
that refactoring operations help developers to improve, among other aspects,
code readability. Also, through the manual investigation of 551 pull requests, we
observed that 468 refactoring operations (∼85%) have been specifically performed
to improve code readability.

The results achieved in such a study motivate this thesis. Especially, all the
studies carried out to study code readability have been conducted considering

1

2 Chapter 1. Introduction

single and, more important, static code snippets without considering the natural
and continuous evolution of software. Thus, the goal of this thesis is to study the
evolution of code readability during the life-cycle of a software system. As a first
contribution, we aim at understanding to what extent code readability is important
to developers during the evolution and the maintenance of a software system. To
this aim, we interviewed 122 open-source developers. The results achieved show
that ∼83.8% of developers consider code readability as an important factor in
their source code writing activities. This study complements and corroborates
the findings of our preliminary study [175].

As a second contribution, we tried to understand how readability evolves in
software systems. Specifically, we conducted a mining study on 25 open-source
software systems and ∼83,000 commits to analyze the readability evolution during
daily software development activities (i.e., creation, modification and deletion).
To do this, we created a model to represent the readability evolution of a file
in a software project. Results show that code readability of a file can undergo
small changes during the development of a software system that does not result
in a change of code from readable to unreadable or vice versa. In particular, if a
code component is created unreadable, it will likely remain unreadable during the
entire software system evolution process [175].

Finally, given the human nature of code writing, as a third contribution, we
empirically verify if cognitive human aspects can influence the readability of a
code snippet. Especially, we conducted an empirical study in which we invited 32
software developers [177] to participate in a controlled experiment. We profiled
participants with 3 psychometric tests to measure attention level (divided into
three networks: alerting, orienting and executive control), working memory, and
immediate recall (aspect related to episodic memory). In the context of the
experiment, developers were asked to carry out code writing tasks. The achieved
results show that one of the attention-related factors, i.e., the orienting network,
correlates with code readability (developers with a higher orienting produce more
readable code).

The remainder of this thesis is organized as follows. In Part I we provide
background notions and a literature review on the main topics of the thesis:
Refactoring (Chapter 2), code readability and understandability (Chapter 3), and

3

cognitive human aspects (Chapter 4). In Part II we present the studies conducted
on the evolution of code readability. Especially, in Chapter 5 we report the study
that motivates this thesis, i.e., the study aiming at assessing the motivations
behind refactoring operations [171]. In Chapter 6 we report the study assessing
the importance of code readability for developers during maintenance tasks [175].
This second part concludes with Chapter 7, in which we report the mining study
aimed at assessing the evolution of code readability in open-source projects [177].
In Part III we report the empirical study conducted to analyze whether cognitive
human aspects can influence code readability. Finally, in Chapter 9 we conclude
the thesis by summarizing the main findings achieved.

Part I

Background & Related
Works

5

“Knowledge is power.
Knowledge shared is power multiplied.”

Robert Boyce

CHAPTER 2

Software Refactoring

Contents
2.1 Refactoring Practices 9

2.2 Motivations and Actions behind Refactoring Oper-
ations . 9

2.3 The Impact of Refactoring on Quality Metrics . . . 11

2.4 Refactoring and Other Software-Related Activities 12

When a developer performs a simple change on the code, it loses its structure.
Over time so many changes deteriorate the code structure. Thus, a developer has
to tide up the code through an activity called refactoring [96]. Refactoring is the
activity performed by the developer for changing a software system. Specifically,
this activity improves the internal structure of software without changing its
external behaviour. With this activity, developers can clean up code minimizing
the introduction of bugs in the code [96].

In Software Engineering research, there are many studies that analyze refac-
toring operations from different perspectives, including how developers perform

8

2.1. Refactoring Practices 9

refactoring [158]; the relationship between refactoring and other software-related
activities (e.g., merge conflicts [140]); the impact of refactoring operations on the
likelihood of introducing bugs [46]; the impact of refactoring on specific quality
indicators (e.g., quality metrics) [215, 216, 33, 66] or on developers’ productivity
[152].

2.1 Refactoring Practices

Murphy et al. [156] created Mylar Monitor, a framework to collect and store
trace information of a user’s activity in Eclipse. This framework collects all the
events performed by users (e.g., changes, window events, URLs viewed through
the embedded Eclipse browser) including the use of the refactoring operations
provided by the IDE. From the analysis of collected data, the authors found
evidence of the developers using 11 kinds of refactoring commands and the most
common operation is the “Rename refactoring”.

Murphy-Hill et al. [158] investigated how developers perform refactorings.
The authors analyzed refactoring operations in eight different datasets. For
example, one of the studied datasets contains usage data from 41 developers
using the Eclipse development environment, capturing an average of 66 hours
of activity per developer. Some of the several interesting findings are that (i)
programmers rarely configure refactoring tools (the overall mean change frequency
varying between 10% and 12%); (ii) commit messages do not help in predicting
refactoring, since developers do not explicitly report their refactoring activities
in them; (iii) developers often interleave refactoring with other programming
activities; and (iv) most of the refactoring operations (~90%) are performed
without the help of any tools.

2.2 Motivations and Actions behind Refactoring
Operations

Wang et al. [231] interviewed developers from four software companies to
reveal the major factors motivating refactoring operations. Results highlight

10 Chapter 2. Software Refactoring

external motivators, e.g., Recognitions from Others, and intrinsic motivators,
i.e., when refactoring is initiated without any obvious external reward (e.g., Self
Esteem) behind refactorings.

Kim et al. [119] presented a field study surveying and interviewing 328
Microsoft engineers to investigate when and how engineers refactor code. Subse-
quently, the authors checked if there was a match between survey respondents’
perception and reality. From this study, it is possible to see that the refactoring
definition is not completely applicable. The execution of a refactoring operation
can have costs and risks, but it can ask also for various types of tool support.
They identified the low readability of source code as one of the symptoms that
push developers to perform refactoring (mentioned by 21% of developers).

Silva et al. [208] observed that the previously discussed works [231, 119] report
findings from surveys asking developers about their general refactoring habits
without focusing on real refactorings they performed. Thus, Silva et al. [208] used
RMiner [222] to monitor refactorings performed in open source repositories and
contacted the developers that perform the refactorings asking them to motivate
the performed changes. Then, they grouped the responses and defined a catalogue
of 44 motivations for 12 refactoring operations. For example, they find that the
Rename Package refactoring is executed to improve the package name, to enforce
naming consistency, and to move the package to the appropriate container [208].

Peruma et al. [174] also analyzed the motivations pushing developers to
refactor their code, but they focused only on rename refactoring operations. These
operations are one of the main activities of a developer to maintain and evolve
the software. Developers rename an entity (e.g., variable or method) when their
labels do not correspond to their behaviour. For example, if the software has
a big number of changes, the behaviour of an entity can change and the entity
name change consequently. Thus, the authors performed an empirical study on
motivations based on rename refactorings. The principal motivation obtained
from their study is that a developer renames an entity for adapting its name to
its behaviour.

Finally, Vassallo et al. [229] mined 200 systems to quantitatively investigate
factors correlating with refactoring. Specifically, they analyzed (i) what are types
of refactoring applied, (ii) when are refactoring operations performed, and (iii)

2.3. The Impact of Refactoring on Quality Metrics 11

what factors induced developers to do refactoring. They found that (i) most
refactorings are performed while enhancing existing features, (ii) refactorings are
mostly performed after one year since the project started and rarely before a new
release, and (iii) developers that refactor code are often the owners of impacted
files.

2.3 The Impact of Refactoring on Quality Metrics

In the existing literature, there no studies on the analysis of the relations
between metrics/code smells and refactoring activities’ developers. Bavota et al.
[44] studied this relationship. The authors extracted the history of three Java
open source projects. From these projects, the authors analyzed if the developer
executes refactoring operations on a given code component, when the quality
metrics indicate the need to refactor it or if there is a code smell. Results show
that there is no relationship between quality metrics and refactoring operations:
Developers refactor code components, also if these are not indicated from quality
metrics.

Chávez et al. [66] presented a study of how refactoring operations impact on
five internal quality attributes, i.e., cohesion, coupling, complexity, inheritance,
and size. The authors studied the history of 23 open source systems, composed
of 29,303 refactoring operations. Results show that developers perform these
activities to improve internal quality attributes. Effectively, the code quality
improves after these operations, also when developers perform these operations to
add new functionality or to fix a bug.

AlOmar et al. [31] identified what fefactoring operations are performed to
improve quality metrics to optimize the quality. They mined (i) 3,759 curated open-
source Java projects to extract all design-related refactoring activities applied
and documented by developers and structural metrics, and (ii) 1,245 quality
improvement commits with their corresponding refactoring operations. Results
show that structural metrics are more popular to represent internal quality
attributes (e.g., CBO, LOC and WMC) and developers consider some quality
attributes than others.

12 Chapter 2. Software Refactoring

Almogahed et al. [30] highlighted a known problem: Developers do not know
what is the more appropriate refactoring technique to use. For this reason, they
searched studies that categorize refactoring techniques on the influence of quality
attributes. Unfortunately, in literature, there is no categorization of refactoring
techniques considering the influence of quality attributes. Thus, developers cannot
resolve these issues, but authors provide recommendations to researchers for filling
this gap. Researchers could create reference and prediction models and developers
might use them as guidelines in the selection of apposite refactoring techniques.

2.4 Refactoring and Other Software-Related Ac-
tivities

Some works have studied the relationship between refactoring and other
software-related activities or properties. Stroggylos and Spinellis [215] extracted
refactoring operations from version control system logs of three open-source
libraries to study the impact of refactoring operations on the values of nine object-
oriented quality metrics. Their results show how some quality metrics influence
negatively refactoring.

Moser et al. [152] conducted a case study in a close-to industrial environment
investigating the impact of refactoring on the productivity of an agile team and
the produced code quality. In the context of mobile apps development, the
achieved results show that refactoring increases software quality and developers’
productivity. Cedrim et al. [64] presented a similar study. Their findings,
however, indicate that in most cases code quality does not improve after refactoring
operations.

Alshayeb [33] also investigated the link between refactoring operations and soft-
ware quality. Particularly, the author studied the impact of refactoring operations
on five external quality attributes (adaptability, maintainability, understandability,
reusability, and testability). His findings highlight that benefits brought by refac-
toring operations on some code classes are often counterbalanced by a decrease of
quality in other classes.

2.4. Refactoring and Other Software-Related Activities 13

Bavota et al. [43] studied the extent to which refactoring activities induce
faults. The authors showed that refactorings involving hierarchies (e.g., push
down method) that can induce faults more frequently than others that are likely
to be harmless in practice.

Szoke et al. [216] performed a case study on five large-scale systems to
investigate the relationship between refactoring and code quality. The authors
investigated 2 million lines of code and they found 200 commits related to
refactoring activities. Their findings show that small refactoring operations
performed in isolation rarely impact software quality. On the other side, a high
number of refactoring operations performed in a block can result in a notable
code quality improvement.

Mahmoudi et al. [140] presented a large scale study on ∼3000 open-source Java
repositories investigating the link between merge conflicts in multiple development
branches and code refactoring operations. The authors found that refactoring
operations are involved in 22% of merge conflicts. Also, conflicts involving
refactoring operations tend to be more complex to solve as compared to conflicts
caused by other types of changes.

Finally, Lin et al. [138] studied the relationship between refactoring operations
and their effect on source code “naturalness”. Naturalness of a software is a
property to evaluate to what extent the code surprises the developer [111]. Their
results show that refactorings do not necessarily increase the naturalness of code
and its impact depends heavily on the type of refactoring.

CHAPTER 3

Source Code Readability

Contents
3.1 Code Readability . 15

3.2 Software/Code Understandability 17

Quality of the source code has been extensively studied in the literature
starting from the 1960s when first software metrics have been proposed, like Lines
Of Code, McCabe’s Cyclomatic Complexity [148] and Halstead’s metrics [107].

While none of them explicitly refers to readability, many of them include
related notions of maintainability or understandability [148, 54, 101]. ISO 9126
understandability takes the perspective of the end-user rather than one of the
developers as, for instance, in the case of the earlier model by Boehm et al. [54]
and SQALE [134]. Given the extensive research on software quality, providing a
complete overview is not possible and we focus on readability from here on.

14

3.1. Code Readability 15

3.1 Code Readability

Previous works focused on automatic assessment of code readability [58, 59,
181, 80, 199]. All the state-of-the-art approaches use machine learning: they all
define some features measured on the source code and they train a binary classifier
to distinguish readable code from unreadable code. To train the classifier on how
to correctly classify source code snippets, these approaches need a huge dataset
containing human assessments of code readability. Three datasets are available in
the literature [58, 80, 200] and these are built similarly: the authors selected a set
of snippets S, asked several developers to evaluate them in terms of readability
using a Likert scale from 1 to 5 and then they (i) aggregated such values and (ii)
used a threshold to have a ground-truth readability level to classify each snippet
as readable or unreadable. In all these studies, authors reported the agreement
among the evaluators.

The study of Buse et al. [58] differs from others [80, 200] because the authors
extracted structural features, e.g., line length, identifier length, number of loops,
and so on. The authors obtained a positive correlation with software quality
metrics, code changes and defect reports. Thus, Buse et al. [58, 59] designed the
first readability model based on structural features. Instead, the study of Dorn
[80] extended the model created by the study of Posnett et al. [181]. The model
of Posnett et al. [181] used Halstead’s metrics and it was used to estimate the
readability of text in natural language, considering three specific features: lines
of code (LOC), entropy and volume. Dorn [80] introduced visual, spatial and
linguistic features to the previous models that measure aspects such as indentation
regularity and alignment, both important when reading code. He showed that
such features allow to define a more general model [80].

Considering the previous studies [58, 80], Scalabrino et al. [200, 199] defined
a new set of textual features to capture a different dimension of code readability.
Such features include, for example, consistency between comments and identifiers,
and comment readability. The authors showed that a comprehensive model
including all the state-of-the-art features is more accurate than single models that
consider only single categories of features.

16 Chapter 3. Source Code Readability

In literature, some studies have discussed these metrics. The first is the study
of Pantiuchina et al. [170], in which the authors tried to understand if such
readability metrics change in the commits in which developers declared they
improved code readability. Their results show that this happens only in a minority
of the cases. Also, Fakhoury et al. [88] recently reported a similar result. It is
possible to obtain this result because even if a change improves readability, the
improvement might be small concerning the size of the changed class, and so
this makes the difference in the metric It is possible to obtain this result because
even if a change improves readability, the improvement might be small concerning
the size of the changed class, and so this makes explainable the difference in the
metric explainable.

Lee et al. [132] observed that the number of coding violations increases during
the early stages of the project history (planning, pre-alpha, alpha), but it drops
at the beta level. They generally showed a decreasing trend of coding violations
as the project matures. Also, they showed that changes in code readability
are related only to some types of coding violations. Using several readability
indicators, Spinnellis et al. [214] observed that the readability of Unix gradually
improved. However, they also highlighted that there is insufficient evidence to
claim that readability is still increasing.

In literature, there are different code readability metrics. Each code readability
metric uses different aspects of source code (i.e., structural features [58, 59]; visual,
spatial, and linguistic features [80]; textual features [200, 199]). There are studies
to understand if developers changed code readability after their declarations
[171, 88]. Despite these studies, in literature, there is no study to analyze the
evolution of code readability in open-source software. In addition, there is limited
empirical evidence on the importance of code readability for developers. We
bridge this gap with the study in Chapter 6. Finally, no one has tried to provide
guidelines to developers to avoid code readability erosion. We bridge this gap
with the study in Chapter 7.

3.2. Software/Code Understandability 17

3.2 Software/Code Understandability

Code readability represents how easily information is conveyed to the de-
veloper. Several works focused, instead, on measuring a related concept, i.e.,
code understandability or comprehensibility, which represents to what extent the
information in the code is usable by the developer.

Capiluppi et al. [62] defined a measure of understandability in OSS projects.
The goal of this study is to understand how understandability evolves. Specifically,
this measure is computed on the history of 19 open source projects considering (i)
the percentage of micro-modules located in the macro-modules (i.e., the number of
files within the directories), and (ii) the relative size of the micro-modules. Their
results demonstrate that, during the lifecycle of the system, the understandability
typically grows.

Misra et al. [150] compared the Weyuker’s properties [235] and other similar
measures with the Cognitive Weigth Complexity Measure (CWCM). A Cognitive
Weight Complexity Measure (CWCM) is given from the cognitive weights of basic
control structures, CWCM = Wc in which Wc is the cognitive weight of the basic
control structure, that is a basic building block of software. Specifically, Wc is
the sum of the cognitive weight of all linear blocks represented by basic control
structures (BCS). Thus, Misra et al. [150] assigned weight to software components
through the analysis of their control structures. Instead, Weyuker’s properties
[235] are focused on nine properties to measure software complexity in terms of
weaknesses of a proposed measure.

Thongmak et al. [218] evaluated the understandability of aspect-oriented
software through aspect-oriented software dependence graphs. To do this, the
authors proposed metrics that can operate on different levels of dependence graphs
(i.e., Module-Level metrics, Class/Aspect-Level metrics, System-Level metrics).
Module-Level metrics have to operate for understanding (i) methods based on
parameters, statements, called methods, and formal and actual parameters of
each statement; (ii) advice based on parameters, statements, called methods,
parameters-in/out of each statement, and pointcuts. Class/Aspect-Level Metrics
consider the relationships between modules (i.e., class membership dependencies

18 Chapter 3. Source Code Readability

and parameter dependencies). System-level metrics consider graphs representing
the entire system.

Subsequently, Chen et al. [67] explored the COCOMO II Software Understand-
ability metrics verifying a correlation between the software maintainability and a
set of human-evaluation factors. COCOMO II is the acronym of COnstructive
COst MOdel II and it is a model to measure software effort, cost, and schedule
estimation [55]. COCOMO II is based on three submodels, i.e., the early design
model, the application composition model, and the post-architecture model. This
last submodel is used to predict software development and maintenance effort.
With the use of some factors, it is possible to calculate the cost behind a change
on the existing software. In these factors, it is possible to see that there are SU
factors (structure, application clarity, self-descriptiveness), used for evaluating
the maintenance and adaptation underestimates [55]. Chen et al. [67] conducted
a controlled experiment with a study involving six graduate students, who were
asked to accomplish 44 maintenance tasks. This study shows that higher quality
of the code structure and higher self-descriptiveness lead to higher code quality
[67].

Scalabrino et al. [197, 198] performed an in-depth analysis of 121 metrics
divided into three categories: (i) new code-related metrics, (ii) documentation-
related metrics, and (iii) developer-related metrics. In code-related metrics,
authors consider the following set of metrics:

• Kasto and Whalley’s metrics [117]: cyclomatic complexity [148] (i.e., the
number of linear independent paths of the snippet), the average number of
nested blocks, number of parameters, number of statements, and number of
identifiers.

• Buse and Weimer’s metrics [59], which are metrics for measuring properties
at the level of a single line of code in aggregate form with the mean and/or
the maximum. Specifically, Buse and Weimer measure: (i) the average of the
number of assignments, number of blank lines, number of commas, number
of comments, number of comparisons, number of conditionals, number of
loops, number of operators, number of parentheses, number of periods,
and number of spaces; (ii) average and maximum of number of identifiers,

3.2. Software/Code Understandability 19

number of keywords and numbers, identifiers length, indentation length,
and line length; (iii) maximum of number of words.

• Posnett et al.’s metrics [181]: lines of code (LOC), token entropy, and
Halstead’s volume.

• Dorn’s metrics [80], which are a different version of Buse and Weimer’s
metrics [59] because Dorn measures the bandwidth of the Discrete Fourier
Transform (DFT) of most previous metrics. Indeed, Dorn [80] measures
the DFT on all the properties listed from the Buse and Weimer’s metrics,
except the number of blank lines, the number of characters, the number of
literals, the number of strings, and the length of the identifiers. Furthermore,
Dorn [80] measures (i) the absolute and the relative area (i.e., total area of
comments and area of comments separated by an area of strings) of characters
on different token categories (i.e., comments, identifiers, keywords, literals,
numbers, operators, and strings), (ii) the number of aligned blocks, and (iii)
the number of identifiers that include words in the English dictionary.

• Scalabrino’s metrics [200], which are metrics to evaluate code readability
calculating the average, the maximum and the minimum, i.e., Narrow
Meaning Identifiers (NMI), Identifiers Terms In Dictionary (ITID), Textual
Coherence (TC) and Number of Meanings (NM), i.e., the metric defined in
this same study [200].

• Invoked Methods Signature Quality (IMSQ), a new code-related metric
defined in the study of Scalabrino et al. [198]. This metric measures the
readability and the representativeness of the signature of internal methods
invoked by given code snippets belonging to the same system considering
the minimum, the average and the maximum values.

In documentation-related metrics, Scalabrino et al. [197, 198] use the
following metrics to capture the quality of the internal documentation of a snippet:

• Scalabrino’s metrics [200]: (i) Comments Readability (CR), which measures
readability values of the comments in a snippet with the use of Flesch

20 Chapter 3. Source Code Readability

reading-ease test [93]; (ii) Comments and Identifiers Consistency (CIC),
which measures the consistency between comments and code; (iii) CICsyn,
which measures the consistency between comments and code considering
synonyms.

• new documentation-related metrics [198]: these two metrics evaluate respec-
tively the internal documentation quality, i.e., Methods Internal Documen-
tation Quality (MIDQ), and the external documentation quality, i.e., API
External Documentation Quality (AEDQ).

In the end, in developer-related metrics, Scalabrino et al. [197, 198]
capture:

• the programming experience of the developer in years (PEgen);

• the programming experience in years of a developer of the programming
language related to the implemented snippet (PEspec);

• External API Popularity (EAP).

Scalabrino et al. [197, 198] correlated such metrics — singularly and combining
them — with several proxies for code understandability. Using a dataset of
444 human evaluations from 63 developers, the authors showed that none of
such metrics is related to understandability, including code readability. Results
of interviews of five professional developers suggest that code readability is
important to them whatsoever. The authors conclude that readability may affect
understandability in the long run, i.e., unreadable code may tire developers more
quickly.

Trockman et al. [220] performed a reanalysis of the dataset by Scalabrino et
al. [197] through the combination of metrics and statistical modelling techniques.
They showed that the combination of metrics improves the assessment of code
understandability, as also reported by Scalabrino et al. [198].

CHAPTER 4

Cognitive Human Factors

Contents
4.1 Psychological Notions 21

4.2 Relation between cognitive aspects and task perfor-
mance . 23

4.3 Cognitive Human Aspects in Software Engineering 24

In this chapter, we first provide some background on psychological notions, such
as cognitive functions and aspects. Then, we discuss both (i) related work exploring
generic applications of the cognitive aspects (e.g., driving and mathematics), and
(ii) previous applications of cognitive psychology in the Software Engineering
domain.

4.1 Psychological Notions

In cognitive psychology, the term cognition is composed by from thoughts
and ideas and it is used to denote the internal mental processes (or cognitive

21

22 Chapter 4. Cognitive Human Factors

functions). Cognitive functions regulate human perception, reasoning, memory,
intuition, thinking, speaking, decision making, and problem solving [195, 49].
Such processes cannot be observed directly but they can be measured indirectly
through psychometrics, by using specific tests. Such tests may be, for example,
questionnaires or exercises, and they aim at measuring proxy metrics, such as
reaction times, psychological responses, or real-time neuroimaging [99, 29].

Cognitive functions can be measured through psychometrics tests and neu-
roimaging. For each cognitive function, there is an appropriate psychometric test.
For example, to measure the working memory, it is possible to use the Symbol
Digit Modalities Test and the List Sorting Working Memory Test [100]. The
Brief Test of Adult Cognition by Telephone (BTACT) can be used to measure
different aspects of the cognitive functions (e.g., immediate recall) [226]. For
measuring attention level, it is possible measure through the Attention Network
Test (ANT) [179, 89, 230]. The proxy variables measured after or during the tests
may then be combined to provide a final measure of an aspect of the cognitive
function (what we call, in this study, cognitive human aspect). In the case of
attention level, we can measure three different networks, i.e., alerting, orienting,
and executive control. Specifically, alerting is the ability to achieve and maintain
an alert state, orienting is the ability to select the information from sensory input,
and executive control is the ability to understand how resolve conflict among
responses. To measure these networks, Fan et al. [89] designed the Attention
Network Test (ANT). This test is composed of four cue conditions (i.e., no cue,
center cue, double cue and spatial cue) and six stimuli (i.e., neutral, congruent
and incongruent). In ANT, reaction times obtained in different situations are
combined to measure the efficiency of the alerting, orienting, and executive control
cognitive functions. Alerting is the subtraction between the mean RT of the
double cue conditions and the mean RT of the no cue conditions. Orienting is the
subtraction between the mean RT of the spatial cue conditions from the mean
RT of the center cue. Executive control is the subtraction between the mean RT
of all congruent stimuli and the mean RT of all incongruent stimuli. A different
approach used for studying cognitive functions is through cognitive neuroscience.
Functional neuroimaging is used to find correlation of the patterns obtained from

4.2. Relation between cognitive aspects and task performance 23

the brain activity in various processing stages and different cognitive functions
[195].

4.2 Relation between cognitive aspects and task
performance

Previous work focused on studying cognitive functions in different domains. In
some experiments, researchers even tried to explain or predict the outcome of non-
trivial tasks (e.g., driving). In these studies, the authors investigate the relation
between cognitive aspects and task performance of any nature (i.e., linguistic,
mathematical and driving).

In linguistic research, Nour et al. [160] analyzed the attention network tests
in three different groups of participants (i.e., intepreting students, translation
students, and professional interpreters. Results show the correlation between
two types of language interpretations (i.e., professionals and students) and the
attention networks, i.e., alerting, orienting and executive control. Results shown
that for each group of participants has a specific attention network dynamics:
for example, interpreting students differ from translation students for alertness
and executive network. Woumans et al. [239] studied the relation between
language control and non-verbal cognitive control between monolingual, Dutch-
French unbalanced bilinguals, balanced bilinguals, and interpreters. Results show
that bilinguals can modulate better the nature and extent of a cognitive control
advantage compared to interpreters and monolinguals.

Multiple studies demonstrated that the experience in a certain domain can allow
the acquisitions of skills for other domains with similar abilities [103, 52, 104, 202]
and that a training of some cognitive functions can change attentional processes
[137].

Other studies used cognitive human aspects in the mathematical field to
evaluate whether there is a correlation between cognitive human aspects and
elementary mathematics performance [105, 155, 172]. Passolunghi et al. [172]
found precursors of mathematics learning in the primary school. Authors verified
the correlation between cognitive abilities (i.e., working memory and counting

24 Chapter 4. Cognitive Human Factors

ability) and mathematics learning. Their results show that cognitive abilities are
associated with mathematics learning. Wei et al. [234] studied which cognitive
human aspects are necessary to obtain advanced mathematics knowledge and
skills. Results show that spatial abilities and language comprehension have a
strong correlation with performance in advanced mathematics, but the study
does not report any significant correlation with numerical processing. Musso et
al. [159] also considered interactions and influence of cognitive human aspects
on mathematical performances. Results show a relevance on educational quality,
improvement, and accountability.

Weaver et al. [233] used alerting, orienting and executive control efficiency to
predict the driving outcome. For this reason, Weaver et al. [233] wanted to verify
whether the Useful Field of View1 is equivalent to the Attention Network Test
(ANT). Results have confirmed this equivalcence.

Multiple studies demonstrated that the experience in a certain domain can allow
the acquisitions of skills for other domains with similar abilities [103, 52, 104, 202]
and that a training of some cognitive functions can change attentional processes
[137].

4.3 Cognitive Human Aspects in Software Engi-
neering

In Software Engineering research, previous work measured cognitive human
aspects and correlated them with developers’ characteristics and software quality
(mostly related to the API usability).

A line of research support our theory. In last decade, neuroimaging techniques
have been used to understand the cognitive processes of programming [84, 94,
112, 173, 206, 207, 126, 116]. Specifically, Peitek et al. [173] and Siegmund et
al. [207] used these techniques in the program comprehension and Krueger et al.
[126] used these in the code writing.

Peitek et al. [173] analyzed whether functional magnetic resonance imaging
(fMRI) can measure program comprehension. The authors invited 17 developers

1The Useful Field of View is used to predict driving performances and it is used to measure
the processing speed.

4.3. Cognitive Human Aspects in Software Engineering 25

to comprehend source code in an fMRI (functional magnetic resonance imaging)
scanner. Results show that five brain regions are activated during a program
comprehension task related to working memory, attention level and language
processing. The cognitive effort is reduced given developers’ familiarity with the
programming language. Subsequently, this experiment has been replicated with
11 participants and results have been confirmed by Siegmund et al. [207]. [207]
used the fMRI with 11 participants while they read a program. Authors perform
manipulations on experimental conditions of beacons and layout to understand
cognitive processes of the bottom-up comprehension. Their results show that
beacons facilitate program comprehension tasks and there is less brain activation.

Another study that involves functional magnetic resonance imaging (fMRI) is
the study of Krueger et al. [126]. Authors compare neural representations of code
writing and those of prose writing. Results show the the pose writing active left
hemisphere that are associated with language and the code writing involves the
activation of more parts of the right hemisphere, i.e., attention control, working
memory, planning and spatial cognition. Thus, these results support the evidence
that code and prose writing have different behaviour at mental level.

Sharafi et al. [203] perform two controlled experiments with 112 students
during a series of development activities, i.e., code comprehension, code review,
and data structure manipulations. Students was analyzed through neuroimaging
activities, i.e., functional near-infrared spectroscopy (fNIRS) and functional
magnetic resonance imaging (fMRI) and eye tracking. Results show that there
are different neural representations between programming languages and natural
languages.

As described in Section 4.1, cognitive human aspects can be measured through
psychometric tests and neuroimaging. In software engineering, the functional
neuroimaging take at light that given development activities correspond to the
neural activation. This has been demonstrated by Peitek et al. [173], Siegmund
et al. [207] and Krueger et al. [126]. These studies shows that programming tasks
(i.e., program comprehension and code writing) activate specific brain regions.
For this reason, with our study we want to verify the correlation between cognitive
human aspects and the quality of coding tasks in terms of correctness, time and

26 Chapter 4. Cognitive Human Factors

readability. To do this, we measure cognitive human aspects through the use of
psychometric tests as other studies present in literature [163, 57].

Oliveira et al. [163] performed an experiment with 109 developers in which
they studied if developers can detect API security blindspots2 in code. In addition,
Oliveira et al. examined the influence of developer characteristics (e.g., familiarity
with code, cognitive function and personality) on the ability in detecting blindspots.
Their results showed that there is no correlation between cognitive functions and
the developer’s ability to detect API blindspots. In a very recent study, Brun et
al. [57] replicated the study by Oliveira et al. [163] and they obtained similar
results. Differently from such studies, in this study we focus on the relationship
between cognitive functions and the outcome of coding tasks, which are inherently
different because they require developers to writing code, and not just read it.

In another study, Oliveira et al. [162] exploit the psychological manipulation to
validate the following hypothesis: software vulnerabilities are not part of classical
programming heuristics and developers do not consider them in their programming
tasks. Results show that the security is not a principal activity of developers and
this task need of a certain cognitive effort.

We can see that there are different studies on the cognitive human aspects in
Software Engineering. The most interesting result is that some studies discover
that during coding activities (i.e., code writing and program comprehension) brain
regions are activated during a program comprehension task related to working
memory and attention level [173, 126, 207]. For this reason, in Chapter 8 we want
to understand if there is a correlation between cognitive human aspects and the
outcome of coding tasks in terms of time required to complete a task and the
quality of the final solution (correctness and code readability).

2An API security blindspots is an error generated from the developer that can conduct to a
violation of the API usage [63].

Part II

Code Readability
Improvement & Evolution

27

“Programs must be written for people to read,
and only incidentally for machines to execute.”

Harold Abelson

CHAPTER 5

Why Do Developers Improve Source Code Quality?

Contents
5.1 Introduction . 31

5.2 Design of the Study 33

5.2.1 Study Context . 34

5.2.2 Quantitative Analysis (RQ1) 36

5.2.3 Qualitative Analysis of Refactoring Discussions in Pull
Requests (RQ2) . 43

5.3 Results . 45

5.3.1 Which Product and Process-related Factors Relate
with an Increase of Refactoring Operation Chances? . 45

5.3.2 What are the Reasons for Performing a Refactoring
Operation? . 49

5.4 Threats to Validity 66

5.5 Final Remarks . 68

30

5.1. Introduction 31

5.1 Introduction

Software refactoring has been widely studied in the research community,
with most of the works falling into three main research threads: (i) approaches
aimed at identifying refactoring opportunities [167]; (ii) techniques to recommend
refactoring solutions for a given design flaw [46]; and (iii) empirical studies looking
at software refactoring from many different perspectives [231, 158, 208, 64, 229].
The knowledge of motivations pushing developers to perform refactoring [208] can
help in building recommender systems able to propose suitable solutions for that.
For this reason, understanding when and why developers perform refactoring has
been the goal of many previous studies [231, 119, 44, 208, 229].

Some of these studies tried to answer this question by looking at specific factors
that might correlate with refactoring operations, such as code quality proxies (i.e.,
quantitative measures providing indications about the internal quality of code
components, such as quality metrics or code smells) [44, 229]. While valuable, these
studies provide limited insights into the reasons behind the performed refactorings,
since their analysis is mostly quantitative and limited to a small number of factors.
Other studies opted for a more qualitative approach by interviewing developers
[231, 119] to identify the major factors that motivate their refactorings. Although
these studies have pioneered the investigation of the reasons pushing developers
to refactor their code, as observed by Silva et al. [208], the previously mentioned
surveys are general purpose, meaning that they do not ask developers to justify
specific refactorings they performed, but rather study refactoring habits in general.
To address this limitation, Silva et al. [208] interviewed developers who authored
222 refactoring-related commits to understand the reasons behind these specific
operations.

Stemming from the studies discussed above and to generalize their findings
[231, 119, 208], this study describes a large-scale mining study combining quanti-
tative and qualitative analyses to investigate the motivations behind refactoring
operations, by observing code and discussions rather than interviewing develop-
ers. From a quantitative point of view, we mine the change history of 150 Java
repositories hosted on GitHub to extract 287,813 refactoring operations of 25
different types performed by developers through the RMiner tool [222]. Then,

32 Chapter 5. Why Do Developers Improve Source Code Quality?

we analyze product- (e.g., slopes indicating whether the quality of code compo-
nents as assessed by quality metrics is decreasing over time) and process-related
(e.g., source code change- and fault-proneness) factors that contribute to trigger
refactoring actions. As compared to previous work [44, 229], we consider a more
comprehensive set of factors and, more importantly, analyze them in a single
model rather than in isolation, showing which ones are related to refactoring
operations. From a qualitative point of view, we use the same set of systems to
manually analyze a sample of 551 pull requests (PRs) in which (i) developers
discuss refactoring and (ii) RMiner identifies at least one refactoring operation.
Through a manual analysis, we identify the rationale of the refactoring change,
and whether it is the main intent of the change or, rather, they are triggered by
the code review process of the PR. As the main contribution of this analysis, we
defined an extensive taxonomy of 67 motivations pushing developers to implement
refactoring operations. Our qualitative analysis complements and generalizes the
findings in previous survey-based studies [231, 119, 208] by investigating the same
research question with a completely different experimental design.

As compared to the most similar work (i.e., Silva et al. [208]), the following
notable differences can be highlighted for what concerns the study design and
findings:

• Study Design: surveying developers vs analyzing their activities. While
Silva et al. [208] contacted the developers authoring the refactorings asking
their motivations for the implemented changes, we manually inspect pull
requests implementing refactorings by analyzing their discussion and related
commits in order to create our taxonomy of motivations. Investigating the
same research question with two different experimental designs can lead to
additional insights, and helps in generalizing previous findings.

• Study Design: complementing qualitative and quantitative analysis. In our
work, we analyze the motivations behind refactoring operations not only
from a qualitative perspective (as done by Silva et al. [208]), but also by
quantitatively studying the influence of product and process metrics on the
triggering of refactoring operations. Also, to the best of our knowledge, our

5.2. Design of the Study 33

study is the first one analyzing these metrics in a single model rather than
in isolation (as done in [44], for example).

• Findings: complementing and generalizing Silva et al. [208]. As output of
their study, Silva et al. [208] defined a list of 44 motivations for 12 frequently
applied refactoring operations. Our taxonomy, besides confirming 41 of their
motivations, thus improving the generalizability of their findings, includes
26 additional ones that are not covered in the previous study.

Our quantitative analysis indicates that code readability and process-related
factors correlate with the changes a commit containing refactoring operations
has. As the main result of the qualitative analysis, we provide a comprehensive
taxonomy of 67 categories of motivations leading developers to refactoring opera-
tions. We describe and exemplify each category, and discuss its implications in
refactoring research and practice.

Motivated by such results, as it will presented in the next Chapters, we want
to study code readability in the context of software evolution. Thus, we want to
understand (i) the importance of readability for developers (Chapter 6); (ii) the
evolution of code readability in complex software systems (Chapter 7); (iii) the
influence of developers’ personal characteristics on the evolution of code readability
(Chapter 8).

This chapter is organized as follows. Section 5.2 describes the study design
we conducted to perform the quantitative and qualitative analysis. Section 5.3
describes obtained results from our study. Finally, in Section 5.4 we report threats
to validity of our study and in Section 5.5 we conclude this chapter.

5.2 Design of the Study

The goal of this study is to quantitatively and qualitatively analyze the
context in which refactoring operations occur in open source projects, with the
aim of identifying the circumstances that may make a refactoring happen. The
quality focus relates not only to code quality, but also to the improvement of
the software development process. The context consists of 287,813 refactoring
actions automatically identified in 150 open-source projects and, for the qualitative

34 Chapter 5. Why Do Developers Improve Source Code Quality?

analysis, of 551 manually-analyzed PRs mentioning refactoring operations and
linked onto refactoring-related commits.

We address the following two research questions (RQs):
RQ1: Which product and process-related factors relate with an increase of

refactoring operation chances? We are interested in studying if various source code
features or process features correlate with the presence of refactoring operations
in a commit.

RQ2: What are the reasons for performing a refactoring operation? We
investigate the rationale behind refactoring opportunities. We consider refactorings
occurred in PRs, and perform a qualitative analysis of developers’ discussions
over the PR. Also, since previous work found that most refactoring operations
occur with other changes [158], by analyzing PRs we give a closer look at this
phenomenon, investigating if the refactoring was tangled with other changes,
and looking at whether the refactoring was the primary purpose of the PR. We
decided to answer this RQ by looking at PRs rather than at commits implementing
refactorings since PRs offer a richer set of information to analyze to derive the
rationale behind refactoring operations. Indeed, they often feature a discussion
among developers that can help in better understanding what the goal of the
implemented change was.

The formulated RQs investigate the same phenomenon (i.e., what the motiva-
tions for refactoring operations are) from two different perspectives (quantitative—
RQ1 vs qualitative—RQ2). The catalog of motivations identified in the two RQs
can complement and support each other.

5.2.1 Study Context

We identified the projects to be studied among repositories hosted on GitHub.
Since the infrastructure used in our study (e.g., the refactoring detection tool)
only supports Java, we focus on Java projects. Among all Java projects on GitHub,
we aim at studying active projects having a non-trivial change history to study
(to mine the PRs needed for our study) and not representing personal and/or toy
projects (e.g., a project created by a student during an assignment). To identify

5.2. Design of the Study 35

50 000

100 000

150 000

200 000

LOC
0

250 000

500

1000

1500

2000

#Classes
0

2500

20

40

60

80

#Contributors
0

100

200

400

600

800

#Closed PRs
0

1000

2000

4000

6000

8000

#Commits
0

10000

Figure 5.1: Characteristics of the 150 projects used in our study

these projects we applied a number of selection criteria, only retaining projects
having:

• At least 5 contributors and 1 fork, to exclude personal/toy projects.

• At least 500 commits and 100 PRs, to exclude projects having a short change
history and unlikely to provide useful PRs for our study.

• Modified at least once in the period Jan-May 2019, to exclude inactive
projects at the time in which this study has been run.

From the set of 303 remaining projects, we randomly selected 150 of them
for our study (list available in [34]). The choice of selecting a subset of the 303
projects was dictated by the computationally expensive data extraction process
adopted in our study. Indeed, as detailed in the following, besides detecting
refactoring operations, we computed 42 product- and process-metrics (e.g., code
quality metrics, change-proneness of classes) for each of the 213,102 commits in
the studied projects. This process took three months on a 56-core server. Figure
5.1 reports boxplots depicting the distribution of Lines of Code (LOC), number
of classes (#Classes), number of contributors (#Contributors), number of closed
PRs (#Closed PRs), and number of commits (#Commits) for the analyzed 150

36 Chapter 5. Why Do Developers Improve Source Code Quality?

systems. The raw data from which this figure has been created is available in our
replication package [34].

We used the RMiner tool [222] to detect the refactorings implemented by
developers in the studied projects. We focus on commits performed in the
master/default branch of each project. We have chosen RMiner due to its high
reported precision (98%) and recall (87%) [222]. RMiner takes as input two
consecutive commits and provides as output the set of detected refactorings (see
[222] for the supported refactorings).

5.2.2 Quantitative Analysis (RQ1)

The occurrences of the detected refactorings constitute the dependent variable
for RQ1. As independent variables, we consider process-/product-related factors
for each snapshot si (commit) of the master branch.

Identification of Product and Process Metrics

The considered metrics are summarized in Tables 5.1, 5.2 and 5.3 and described
in the following. The selection of these metrics (detailed in the following) is based
on the will to include in our study:

1. Metrics capturing code quality from different perspectives (Table 5.1). We
included both structural and semantic (i.e., textual) metrics that have been
shown to capture orthogonal code quality aspects [144]. Also, we considered
the recent readability metrics proposed in the literature [59, 199], that have
been shown to highly correlate with the developers’ assessment of code
readability.

2. Code smells and quality issues widely studied in the literature (Table 5.2).
The presence of code smells has been correlated with higher change- and
fault-proneness of code [166] and, thus, they could also be responsible for
the triggering of refactoring actions. Also, static analysis tools are more and
more used in the context of continuous integration to perform basic code
quality checks at commit time. Thus, we decided to include the warnings
raised by one of these state-of-the-art tools, i.e., PMD [17].

5.2. Design of the Study 37

Table 5.1: Quality Metrics (Product-related factors)

Near each factor, we indicate whether (X) it was retained.
The factors retained in the model are also highlighted in boldface.

Metric Description
CBO X Coupling Between Object classes: measures the dependencies a class has [70]
WMC X Weighted Methods per Class: sums the cyclomatic complexity of the methods

in a class [70]
RFC X Response For a Class: the number of methods in a class plus the number of

remote methods that are called recursively through the entire call tree [70]
ELOC X Effective Lines Of Code: the lines of code excluding blank lines and comments
NOM X Number Of Methods in a class
NOPM X Number Of Public Methods in a class
DIT X Depth of Inheritance Tree: the length of the path from a class to its farthest

ancestor [70]
NOC X Number Of Children (direct subclasses) of a class
NOF X Number Of Fields declared in a class
NOSF X Number Of Static Fields declared in a class
NOPF Number Of Public Fields declared in a class
NOSM X Number Of Static Methods in a class
NOSI X Number Of Static Invocations of a class
HsLCOM X Henderson-Sellers revised Lack of Cohesion Of Methods (LCOM): a class

cohesion metric based on the sharing of local instance variables by the methods
of the class [70]. HsLCOM dresses limitations of the original LCOM [110]

C3 X Conceptual Cohesion of Classes: avg. textual similarity between all pairs of
methods in a class [144]

StrRead X Structural readability: uses structural aspects (e.g., line length) to model code
readability [59]

ComRead X Comprehensive readability model: combines structural, visual (e.g., alignment)
and textual features (e.g., comments readability) [199]

38 Chapter 5. Why Do Developers Improve Source Code Quality?

3. Process-related factors (Table 5.3). These metrics are meant to provide a
view on the development process, the developers involved in it, and historical
information about the code components. We conjecture that these factors
can play an important role in taking refactoring decisions, as also partially
confirmed by previous work in the literature [229].

As detailed in Section 5.2.2, to avoid multicollinearity, we performed a variable
selection. Near each metric, we indicate the cluster it belongs to and whether (X)
it was retained.

Source Code Quality Metrics. We consider, for each class C changed in
each snapshot si, its quality trend as assessed by the 18 metrics in Table 5.1.
These metrics capture different aspects of code quality, including size (e.g., ELOC),
coupling (e.g., CBO), inheritance (e.g., DIT), complexity (WMC), encapsulation
(e.g., NOPM), and readability (e.g., StrRead). The first 13 metrics in Table 5.1
(i.e., until NOSI included) have been computed by using the CK tool [4]. For
the HsLCOM and C3, we used our implementation, while for the readability
metrics we relied on the original implementations of the tools computing these
metrics kindly made available by the original authors of the papers that introduced
them [59, 199]. We start by measuring these 18 metrics on each class in each
mined snapshot. Then, based on this information, we compute, for each snapshot,
the slope of each metric over a window of N preceding commits (we set N=10
according to a previous work recommending just-in-time refactoring [169]). The
slope of a line describes its steepness and in our case can highlight, for example,
continuing degradation of some quality aspects (e.g., a high positive slope for the
WMC metrics indicates a steep increase in complexity for a class over time). Thus,
using slopes we capture the improvement or degradation of quality factors, where
the latter may trigger a refactoring. Clearly, slopes were considered unavailable
for the first ten commits of a class.

Code Design Flaws and Quality Warnings. We consider code design
flaws related to the lack of adoption of good Object-Oriented coding practices
(i.e., Spaghetti Code, Excessive Coupling), to complex/large code components
(i.e., Blob Class, Complex Class) as well as other design flaws and warnings (i.e.,
Excessive Imports, Too Many Methods) raised by a static analysis tool. We
detect five types of code smells using an implementation of the DECOR smell

5.2. Design of the Study 39

Table 5.2: Code Design Flaws (Product-related factors)

Near each factor, we indicate whether (X) it was retained.
The factors retained in the model are also highlighted in boldface.

Design Flaw Description
DECOR Code Smells
Blob Class A large class that monopolizes most of the application

logic [56]
Complex Class X A class characterized by a high cyclomatic complex-

ity [56]
Spaghetti Code X A class declaring long methods without parameters [56]
CDSBP X Class Data Should be Private: violation of information

hiding principle [97]
Functional Decomposition X Scarcely used object-oriented principles, such as in-

heritance and polymorphism; few methods and many
private fields [56]

PMD code quality warnings
Excessive Coupling X A highly coupled class hindering reuse and maintain-

ability [97]
Too Many Nested If
Statements X

Makes the code harder to understand and increase
error-proneness

Excessive Imports X It might indicate too high coupling
Too High NPath Complexity NPath is the number of acyclic execution paths through-

out a method
Excessive Method Length X It might indicate too many functionalities in a single

method
Excessive Class Length It might indicate too many responsibilities implemented

in a class
Too Many Fields X It can make the code hard to understand
Too Many Methods X It might indicate too many responsibilities in a class
Cyclomatic Complexity An excessive degree of decisional logic in a class
Excessive Parameter List X It might indicate the need for a new object to wrap

them
NCSS Type Count X Similar to excessive class length, but it only considers

actual statements
NCSS Method Count X Similar to excessive method length, but it only consid-

ers actual statements
NCSS Constructor Count X Equivalent of NCSS Method Count for constructors

40 Chapter 5. Why Do Developers Improve Source Code Quality?

detector based on the original rules defined by Moha et al. [151]. The choice of
using DECOR is driven by the fact that (i) it is a state-of-the-art smell detector
having high accuracy in detecting smells [151]; and (ii) it applies simple detection
rules that allow it to be very efficient. The latter was a strict requirement for
our analysis since we detected smells in all classes and for all studied systems’
snapshots. In addition, we also consider 13 flaws from a widely-used static analysis
tool that does not require code compilation, i.e., PMD [17]. The set of detected
design flaws and code quality warnings is described in Table 5.2.

Process-related factors. Besides the product-related factors previously
described, we also study how process-related factors correlate with refactoring. In
this case, we extract for each analyzed snapshot the factors summarized in Table
5.3.

Given a snapshot si, we compute its distance (in commits) from the previous
and next release (first two rows in Table 5.3). This to verify the conjecture of
Vassallo et al. [229] that refactoring does not occur immediately before/after a
release. This information was retrieved using the GitHub API, through which it
is possible to access all the tags related to a project. Then, we manually looked
at the tags assigned to each project to isolate the ones referring to a new release.

We also consider the change- and fault-proneness of classes. The change-
proneness is computed as the ratio between the total number of lines changed in
the class C from the date of its addition to the project and the total number of
commits in which C was changed, until each snapshot si.

The fault-proneness for C is computed as the number of bug-fixing commits
it has been subject to in the past (i.e., before si). For each project, we firstly
identified all bug-fixing commits by matching patterns [91]: “fix” or “solve” or
“close” and “bug” or “defect” or “crash” or “fail” or “error”. Then, for a given
class C and for each snapshot si, we compute the number of bug-fixing commits
preceding si and impacting C. Section 5.4 discusses the extent to which this
simple heuristic for identifying bug fixes leads towards imprecisions.

Finally, we consider two metrics capturing the experience of the developers
who worked on the system’s classes. The first metric, named Developer Overall
Experience, assesses the experience of each developer as the number of commits
she performed in the past. For each snapshot si and for each of its classes C,

5.2. Design of the Study 41

Table 5.3: Process-related factors

Near each factor, we indicate whether (X) it was retained.
The factors retained in the model are also highlighted in boldface.

Metric Description
Closeness to a previous release
X

The number of commits until the previous minor/major
release

Closeness to a next release X The number of commits until the next minor/major
release

Fault-Proneness X Number of bugs fixed in the project history on a given
class

Change-Proneness X The average number of lines impacted in commits
related to a class

Developer Overall Experience
X

The number of past commits a developer performed

Developer Class Experience X The number of past commits on a class performed by
a developer

we extract the list of developers who modified C in the past (i.e., before si).
For each commit cj (with j < i) in which C has been modified, we compute
the experience of the developer authoring cj (i.e., the number of commits she
performed before cj). This gives us a distribution of developers’ experiences, for
which we compute the minimum. Indeed, the minimum represents the lowest
experience of a developer who worked on C, and we assume it might be correlated
with future refactoring actions taken on C.

The Developer Class Experience computes a class-related experience: for each
snapshot si and for each of its classes C, this form of experience is computed for a
given developer as the number of commits impacting C she performed in the past.
Thus, it is a more specific version of the overall experience. We compute this
metric for each si and C under study in the same way explained for the overall
experience.

Metrics Aggregation and Preprocessing

Since in RQ1 we are interested to build an explanatory model explaining
which factors correlate with the presence of refactoring actions in a snapshot,
we had to aggregate metrics for all classes involved in each snapshot. For the
product metrics, we compute the maximum slope among all classes involved in

42 Chapter 5. Why Do Developers Improve Source Code Quality?

the snapshot, except for the conceptual cohesion (C3) and readability (StrRead
and ComRead) metrics, which go in the opposite directions than other metrics
(higher values are better). In such cases, we consider the minimum. In both
cases, the rationale is to identify the “worst case" in a snapshot, which could
ideally trigger a refactoring. As for the DECOR smells, we count the number of
classes exhibiting a smell in each snapshot, while for PMD we sum the number of
warnings of each type among changed classes. Similarly to what done for product
metrics, for process metrics, we compute the maximum (e.g., maximum number of
bugs), except for the experience-related metrics, where we consider the minimum,
again to consider the worst-case scenario. Finally, release-related metrics do not
need to be aggregated, since they are already at commit granularity.

After that, to avoid multi-collinearity, we use the R redun function of the Hmisc
package [108] for removing redundant variables. The redun function stepwise
removes variable, starting from the most predicable one, until no variable can be
predicted with an adjusted R2 greater than a given threshold (0.8 in our study).
Once again, we use the whole dataset to perform correlation analysis, because we
intend to build an explanatory model and not a predictive model.

Since the value of our independent variables can depend on projects’ character-
istics, and to properly interpret the importance of each variable in the model, we
normalize variable values, within each project, in the interval [0, 1]. This is done
by subtracting the minimum and dividing by the difference between the maximum
and minimum. Finally, to build a model easy to be interpreted, we invert (i.e.,
compute 1-x) the values of variables going towards a different direction than the
others (i.e., those for which the higher the better).

Mixed-model Building

Once variables have been preprocessed, we address RQ1 by building mixed-
effect generalized linear models. The model, built using the glmer function of
the lme4 [41] R package, is a logistic regression mixed-effect model where: (i)
the dependent variable is a dichotomous variable indicating whether at least a
refactoring was performed in a given commit; (ii) the independent variables (fixed
effects) are all the aforementioned ones, after having pruned out those highly
correlating with others; (iii) the random effect is the project in which the change

5.2. Design of the Study 43

occurred. The latter aims at controlling within-project effects, e.g., a project
following a specific development process had better code quality assurance policies
than others. To simplify, our model reports whether the status of the system
(as assessed by the used independent variables) in the snapshot Si−1 triggered a
refactoring in the subsequent commit Ci.

To answerRQ1, we report the details of the model, among others the coefficient
of each factor in the model, and the p-value indicating whether the factor is
statistically significant or not (for a significance level of 95%). We also report the
odds ratio (OR) which, for a logistic regression model, is given by eci where ci is
the coefficient of the i-th factor. An OR > 1 indicates that a unity increase of a
variable increases OR times the chances of a refactoring to occur.

5.2.3 Qualitative Analysis of Refactoring Discussions in
Pull Requests (RQ2)

For the qualitative analysis, we identified PRs likely discussing refactorings
using two criteria to be satisfied: (i) whether a commit is part of a PR or made
during its review contains a refactoring identified by RMiner, and (ii) whether
the PR title or comments contain refactoring-related keywords. We used a list of
refactoring keywords defined in a previous work [61] (available in our replication
package [34]) and augmented it with all names of refactorings identified by RMiner
[222]. Note that, while this selection process can generate false positives (i.e., PRs
unrelated to refactoring operations), these will be discarded during the manual
analysis and, thus, do not represent a source of noise for our study.

Once the candidate set of 2,400 PRs has been identified, we created a randomly-
stratified sample of 551 PRs. The strata here were represented by the projects, i.e.,
PRs were sampled across projects proportionally based on the number of candidate
PRs found in the previous step. The total number of PRs sampled allows us to
ensure a significance interval (margin of error) of ±5% with a confidence level
of 99%, and feature a total of 8,108 refactoring operations identified by RMiner.
This estimation has been performed using a sample size (SS) calculation formula

44 Chapter 5. Why Do Developers Improve Source Code Quality?

for an unknown population [193]:

SS = p · (1− p) Z
2
α

E2

and SSadj for a known population pop:

SSadj = SS

1 + SS−1
pop

where p is the estimated probability of the observation event to occur (we assume
it being 0.5 if we don’t know it a priori), Zα is the value of the Z distribution for
a given confidence level, and E is the estimated margin of error (5%).

We then uploaded the sample of PRs on a tagging webapp we used to perform
a manual coding of PRs. The webapp presented to the annotator the following
information: (i) the PR title and hyperlink to the discussion; (ii) the refactoring-
related keyword(s) matched in the PR text; and (iii) the list of refactorings
detected by RMiner in commits linked to the PR, as well as the links to the
GitHub diff pages of the commits themselves.

Through the coding app, each annotator could add one or more tagging
items, containing the following information: (i) the type of refactoring action
performed and discussed in the PR, or whether the change discussed was related
to a combination of refactorings; (ii) whether the refactoring was the original
intent of the PR, whether it happened as a consequence of the PR discussion, or
whether it happened accidentally because of another change; (iii) whether the
refactoring was tangled with other changes, or if it was the only purpose of the
PR; (iv) finally, a tag indicating the motivation behind the refactoring, as it could
be inferred from the inspection of the PR title/description, from its discussion,
and from the commits related to it, looking at commit messages and, when needed,
code diff. Note that each annotator could add more than one motivation for
each PR (e.g., one for each refactoring operation, or even more than one for the
same refactoring). To assign the tag describing the motivation, the annotator
could choose an available tag in a drop-down menu (from those previously created
by other annotators or by herself), or add a new one if no tag was fitting the

5.3. Results 45

specific case. If an annotator realized that the PR discussion was not related to
refactoring, the PR was tagged as “false positive”.

Six of the seven authors of the study took part in the annotation process.
The webapp we developed took care of automatically assigning each PRs to at
least two of the involved annotators. We collected a total of 1,223 tags each one
reporting a motivation for a refactoring (or combination of refactorings) performed
in a PR. After each PR was tagged by two annotators, three of the authors jointly
worked on the available tags to perform a card sorting activity [213] aimed at
merging duplicates (i.e., similar tags having the same meaning), and started
grouping tags into categories. Then, we created a first taxonomy describing the
different purposes of refactorings by only using the 699 tags for which there was
no conflict (i.e., the same tag was used by the two annotators for motivating the
refactoring observed in a PR). After a first draft of the taxonomy was produced,
two different authors refined it, by renaming some categories and moving sub-
categories through the taxonomy. Once the final taxonomy was produced, three
authors jointly discussed the conflicting cases in the categorization (524 out of
1,223 tags) and assigned them to suitable taxonomy categories, creating new ones
when needed, and ensuring a consistency of category naming.

To addressRQ2, we report and discuss the taxonomy of refactoring motivations
inferred as previously explained. In particular, we discuss the various categories,
highlighting the percentages of PRs belonging to the category, reporting some
examples, and highlighting the implications resulting from our empirical findings.

5.3 Results

In the following we report and discuss the results addressing our RQs (Section
5.2).

5.3.1 Which Product and Process-related Factors Relate
with an Increase of Refactoring Operation Chances?

Over the 213,102 snapshots analyzed, RMiner identified a total of 287,813
refactoring operations. More in details, our dataset contains 35,560 commits

46 Chapter 5. Why Do Developers Improve Source Code Quality?

Table 5.4: Generalized mixed effect logistic regression model: diagnostics, residuals,
and random effect

Diagnostics

AIC BIC logLik deviance df resid.
21,071.5 21,362.4 -10,499.7 20,999.5 23,860

Scaled residuals

Min 1Q Median 3Q Max
-2.0565 -0.5256 -0.3867 -0.1094 11.3848

Random effects

Groups Name Variance Std.Dev.
ProjectName (Intercept) 1.549 1.245

(' 17%) with at least one refactoring operation. If we exclude renaming operations
(Rename Method and Rename Class), RMiner found a total of 209,385 refactorings
in 28,716 different snapshots (14%).

Tables 5.4 and 5.5 report the results of the logistic regression mixed-effect
model. More specifically, Table 5.4 reports the model diagnostics (Akaike In-
formation Criterion — AIC [27], Bayesian Information Criterion — BIC, log
likelihood, deviance, and degree of freedom residuals), the scaled residuals, and
the random effect (project estimate). Concerning the model fitting (Table 5.4),
we tried different models, namely logistic (i.e., the one reported, AIC=21,071),
linear (AIC=22,565), and Poisson (AIC=22,560). Also, although the analysis
performed using the redun function already used a goodness-of-fit to iteratively
remove variables, we experimented logistic models using structural metrics only
(AIC=89,751), conceptual metrics only (AIC=89,475), code design flaws only
(AIC=179,528), and process metrics only (AIC=23,583). Ultimately, the com-
prehensive logistic regression model we report is the one with the smallest AIC
among those considered.

Table 5.5 reports the OR, estimate, standard error, z-value and p-value for
the various factors we considered. We report in bold face the coefficient for which
there is a statistically significant correlation. Metrics that have been inverted
(e.g., C3) are named with the prefix “Lack”.

5.3. Results 47

Table 5.5: Generalized mixed effect logistic regression model: effect of considered
factors

Metric OR Estimate Std. error z-value p-value

(Intercept) 0.00 -7.52 0.52 -14.50 <0.01

Q
ua

lit
y

LackStructRead 3.14 1.14 0.38 3.05 <0.01
LackComRead 2.68 0.99 0.41 2.42 0.02
LackC3 1.87 0.63 0.30 2.06 0.04
CBO 1.02 0.02 0.03 0.66 0.51
WMC 0.98 -0.02 0.01 -1.57 0.12
DIT 1.17 0.16 0.12 1.39 0.17
NOC 0.95 -0.06 0.28 -0.20 0.84
RFC 0.98 -0.02 0.02 -1.05 0.29
NOM 0.88 -0.12 0.05 -2.54 0.01
NOPM 1.22 0.20 0.06 3.19 <0.01
NOSM 0.91 -0.09 0.12 -0.76 0.45
NOF 1.12 0.11 0.08 1.34 0.18
NOSF 0.89 -0.11 0.13 -0.88 0.38
NOSI 1.01 0.01 0.07 0.12 0.90
LOC 1.00 0.00 0.00 0.91 0.36
HsLCOM 1.94 0.66 0.29 2.28 0.02

C
od

e
D
es
ig
n
F
la
w
s

IsGodDecor 1.12 0.12 0.14 0.81 0.42
IsCDSBPDecor 0.90 -0.11 0.15 -0.71 0.48
IsComplexDecor 1.03 0.03 0.14 0.23 0.82
IsFuncDecDecor 0.76 -0.28 0.25 -1.11 0.27
IsSpaghCodeDecor 1.10 0.09 0.13 0.69 0.49
AvoidDeeplyNestedIfStmts 0.92 -0.09 0.20 -0.43 0.67
CouplingBtwObjects 0.73 -0.31 0.22 -1.42 0.16
ExcessiveImport 1.04 0.04 0.20 0.18 0.86
ExcessiveMethodLength 0.96 -0.04 0.23 -0.18 0.85
ExcessiveParameterList 1.28 0.25 0.20 1.22 0.22
TooManyFields 1.08 0.08 0.20 0.40 0.69
TooManyMethods 0.66 -0.42 0.29 -1.42 0.16

P
ro
ce
ss

LackGeneralExp 1.26 0.23 0.10 2.30 0.02
LackFileExp 8.93 2.19 0.13 16.45 <0.01
FilesRelatedToIssueFix 2.09 0.74 0.07 10.12 <0.01
AvgLinesImpactedInCommit 1.93 0.66 0.17 3.96 <0.01
DistancePreviousRelease 1.13 0.12 0.08 1.59 0.11
DistanceNextRelease 1.43 0.36 0.09 4.12 <0.01

Looking at code quality metrics, we found that the lack of structural readability
plays a significant role: lack of structural readability [59] increases the odds of
refactoring (OR=3.14). At the same time, ComRead readability metric and LackC3
show a marginal significance (p-value = 0.02 and p-value = 0.04), respectively. In
particular, looking at the ComRead readability metric combining structural and
textual features [199] the OR is 2.68, while classes showing a decrease in their
conceptual cohesion (LackC3) have 1.87 times higher odds of being refactored.

Among the structural metrics, we found that NOM, NOPM and HsLCOM have
a statistically significant effect (marginally significant for HsLCOM), although the

48 Chapter 5. Why Do Developers Improve Source Code Quality?

OR for NOM and NOPM is close to one. Instead, the OR for HsLCOM is 1.92,
indicating that, as expected, a lack of cohesion increases the odds of inducing a
refactoring operation.

In conclusion, from our analysis it results that conceptual and readability
metrics play a more important role in the model than structural metrics. This
finding is aligned with previous work aimed at applying conceptual metrics to
suggest software refactoring [42] and modularization [47], and with findings of
the seminal work about C3, indicating that such a metric is complementary to
structural metrics [145].

None of the design flaws plays a statistically significant role. Although we
expect that developers take care of removing smells, or try to “make static analysis
tools happy”, and although previous work has pointed the role of refactoring for
improving code having a poor quality, e.g., overly complex code [231, 122, 208, 44],
an evolutionary study on code smells indicates that smells mostly disappear when
the source code is being rewritten, and only in less than 10% of the cases because
of a refactoring action [224].

Interestingly, process-related metrics are highly representative if compared
to product-related metrics: five of the six considered process-related metrics are
statistically significant. Previous bug fixes play a role: a unit increase of the
FileRelatedToIssueFix factor results in 2.09 higher odds of applying a refactoring
in the system. Not only classes subject to bug fixes are likely to be fault-prone in
future [122, 153] but, since they are subject to (often quick-and-dirty) patches,
they may necessitate refactoring actions. For related reasons, classes changing a
lot (AvgLinesImpactedInCommit) also need to be refactored, although the OR is
smaller (1.93).

Moving the attention to the metrics capturing the developers’ experience, the
Developer Class Experience (LackFileExp) has the highest OR. A unit increase of
this factor related to the lack of specific experience (in terms of past commits)
of developers that have recently modified a class, and therefore a decrease of
experience increases the odds of refactoring by 8.93 times. In other words, changes
applied by developers with little knowledge about a code component increase
the need for restructuring it in the future. The general experience also plays a
statistically significant role, although the OR is relatively small (1.26).

5.3. Results 49

Finally, looking at the proximity to a release (DistanceNextRelease and Dis-
tancePreviousRelease), the metrics indicate that refactoring operations are applied
to the system far from a release of the system. More specifically, increasing
the number of commits to a subsequent release, there are 1.43 higher odds of
applying a refactoring. However, results are not significant while looking at the
number of commits from a previous release (i.e., p-value = 0.11). Our findings
confirm previous literature [120, 229] since developers are aware that some kind
of refactorings may result in the introduction of new faults [43] and in any case,
refactoring represents a costly and risky operation [120]. For this reason, it is not
very common to apply refactoring close to a new release of the software product.
Furthermore, once released a new version of the software, developers likely tend
to focus on bug-fixing activities instead of applying refactoring operations. In
summary, based on our observations, refactorings are less likely to occur either
immediately before major releases (developers focus on new features and, for what
possible, on reliability of what they release), and immediately after (developers
work on bug fixes). Instead, refactorings are more likely to happen in-between.
Once again, note that this conclusion is based on purely observational data, and
distance from the next release is unlikely to be used for prediction purposes
(developers do not know when the next release is, unless a project or organization
adopts very rigid time-fixed releases).

We conclude RQ1 stating that, on the one hand, by observing product metrics,
only code readability plays a significant role. On the other hand, process-related
metrics play a significant role. These are metrics related to previous changes and
bug fixes, and to the experience of recent change authors.

5.3.2 What are the Reasons for Performing a Refactoring
Operation?

Before digging into the results, Table 5.6 reports statistics about the refactoring
operations we found in the analyzed PRs. Note that: (i) several refactorings
can be applied in one PR, therefore the number of refactorings is higher than
that of PRs; (ii) we only list refactoring operations we observed at least 10
times. However, the overall number of refactorings (1,117) also includes the

50 Chapter 5. Why Do Developers Improve Source Code Quality?

Table 5.6: Statistics of refactoring operations labeled in the 551 analyzed PRs.

The ‘Freq.” column reports the number of times that the annotators defined a
tag explaining the rationale behind each specific type of refactoring operation.

The total number of 1,117 tags is the result of the 1,223 tags we defined,
excluding the 94 “unclear” (i.e., cases in which the annotators did not manage to
identify the rationale for the refactoring) and 12 “false positives” (i.e., PRs that

were unrelated to refactoring).

Refactoring operation Freq. When? Tangled
Orig. intent Collateral After discuss. Yes No

Combination of refact. 578 65% 3% 32% 86% 14%
Extract operation 112 62% 3% 35% 62% 38%
Rename method 69 47% 4% 49% 59% 41%
Rename class 53 39% 6% 55% 56% 44%
Move class 39 64% 8% 28% 49% 51%
Extract variable 29 52% 35% 14% 72% 28%
Rename variable 29 35% 14% 52% 83% 17%
Extract interface 27 59% 11% 30% 59% 41%
Rename attribute 22 35% 8% 57% 44% 56%
Extract and move 22 68% 0% 32% 55% 45%
Rename parameter 19 69% 5% 26% 37% 63%
Move attribute 15 53% 14% 33% 73% 27%
Move operation 13 69% 0% 31% 39% 61%
Extract superclass 10 70% 10% 20% 80% 20%

Overall 1117 60% 5% 35% 73% 27%

5.3. Results 51

instances related to refactoring types we do not show in Table 5.6 (since having
less than 10 occurrences). In most cases, developers do not discuss a specific
refactoring operation. Instead, they rather provide a rationale for a combination of
refactorings (∼52% of the cases). Then, extract operation (∼10%) and renaming
refactorings in general (∼17%, in total) are the ones more discussed by developers.
Surprisingly, we found that only a small percentage (5%) of refactorings were
done collaterally, i.e., without mentioning them at all. Instead, many of them
were done as the original intent of the PR (∼60%) or after discussing with other
developers (∼35%).

Some refactoring operations, such as extract variable and rename variable,
were performed collaterally more often, given their “local” nature: a variable
name only matters in the methods in which it is declared, while a class name can
possibly impact the whole system. It is worth noting that developers perform
most of the renaming operations after they receive feedback from their peers. This
shows that names are often discussed in PR reviewing activities. Finally, in line
with Murphy-Hill et al. [158], we found that about a fourth of the refactorings
are tangled with other changes.

Improve Code
Design

Foster code reuse Improve
inheritance

Improve
encapsulation

Use
composition

over
inheritance

Facilitate
subclassing

Use override
over

inheritance
Introduce

generalization
Change type

hierarchy
Improve
interface

compliance

Minimize
public

interface

Remove
unnecessary

public variable

Remove
implicit

polymorphism

To better reflect code responsibility

Preparing Code for
Changes

425

58 21 5

Improve Quality of
Test Code

To ensure
better mapping
between test &

production
code

To simplify
testing

activities
To automate

tests
To remove
flaky tests

To ease
locating tests

To simplify
testing for

client projects

49

41

To improve
performance

Other Motivations

To create
separate

Maven artifacts
To promote API
compatibility

To support
third-party

tools
To simplify API

usage
To allow

serialization

108

Prevent Bugs

Promote type
safety

26

Improve
exception
handling

For
implementing
a new feature

For going
open source

For future
refactoring/

major change

Refactor
modules to
prepare for
next release

Improve
Understandability &

Readability

Improve naming Cleanup code

Rename
variables with
similar name

Promote
project coding

style

Improve error
messages and

logging

To adhere to
naming

convention
To fix typos To use more

specific names
To use more

generic names
To better

reflect code
responsibility

To expand
abbreviations

To shorten
identifiers

To keep
consistency in

naming

Reflect newly
added

responsibilities

Remove
linguistic

antipatterns

Fix warnings
from static

analysis tools

468

146 162

Improve
maintainability

Improve
modularization

Better
distribute

responsibilities
Improve

extensibility

Modularize API Massive package
reorganization

Improve
organization of
test directory

Remove
unneeded
packages

Reduce coupling
between
packages

Create a more
cohesive
package

338

Introduce
design pattern

Remove code
smell

Remove
unnecessary

code
Remove
clones

Refactoring
confusing code

Adhere to DRY
principle

Figure 5.2: Motivations behind refactoring operations

Figure 5.2 depicts the taxonomy of refactoring motivations we have identified.
It comprises six root categories: (i) Improve Code Design groups refactoring

52 Chapter 5. Why Do Developers Improve Source Code Quality?

operations targeting an improvement of the system design, e.g., by fostering
the reusability of code; (ii) Improve Understandability & Readability includes
refactorings aimed at reducing the effort to read and understand code, e.g., by
renaming identifiers; (iii) Improve Quality of Test Code groups all refactorings
performed to improve the quality of the test code or ease the testing process; (iv)
Prevent Bugs identifies refactorings performed to prevent the future introduction
of bugs; (v) Preparing Code for Changes includes refactorings performed in
preparation of other changes, e.g., refactoring the code before implementing a
new feature; (vi) finally, Other Motivations groups those motivations that cannot
be classified into one of the previous categories.

It is important to point out that some of the categories of the taxonomy are
not mutually exclusive. For example, a refactoring aimed at improving code
readability is also likely to improve maintainability. However, readability can
be improved for multiple purposes (e.g., simplify testing), and, for this reason,
we separated these categories. We acknowledge that other choices in terms of
categories and assignment of instances to these categories are possible. Also, the
hierarchical organization of the categories only indicates that child categories
are specialization of their parent categories, while it does not imply that two
categories at the same hierarchy level represent motivations at the same level of
abstraction (e.g., Improve Inheritance and Foster Code Reuse appear at the same
level, but the former is a more concrete motivation as compared to the latter).

Figure 5.2 also reports for each category of “motivations” the number of PRs in
which we found related refactoring operations. For readability purposes, we only
report these numbers for the main categories. Note that the number for a parent
category does not correspond to the sum of the children, because some PRs were
only assigned to the parent category, as the motivation was not specific enough.
Also, the sum of refactoring instances in all root nodes does not correspond to
the total number of 551 manually analyzed PRs because some PRs comprise
refactorings falling into multiple categories, and we labeled some refactorings as
Unclear (94) and discarded 12 PRs as False Positive.

We compared our taxonomy with the list of 44 motivations derived by Silva
et al. [208] for 12 frequently applied refactoring operations (see Tables 3 and 4
in [208]). In particular, two of the authors of the study tried to map Silva et al.’s

5.3. Results 53

motivations into our taxonomy, to see whether they were covered or not. Note that
the mapping is not one-to-one since one motivation identified by Silva et al. [208]
may be mapped to more than one category in our taxonomy, as well as one of
our categories can group more than one of their motivations. This is expected
since their motivations and the categories in our taxonomy have been derived
by using two different methodologies. Indeed, while we have categorized the
possible motivations behind the application of refactoring operations by looking
at the discussions in PRs, Silva et al. [208] have asked the reasons behind specific
instances of refactoring operations to the original developer who has applied it.

Only 3 out of the 44 motivations from Silva et al. [208] cannot be mapped
in our taxonomy. The main reason is that for these three instances (i.e., Enable
recursion, Convert to top-level container, and Convert to inner class) it was
unclear to us the actual motivation behind the refactoring. For example, enabling
recursion could be done to improve performance as well as to improve code
readability. However, this high overlap between the two sets of motivations (i)
validates and generalizes the work done by Silva et al. and (ii) supports the
comprehensiveness of our taxonomy. As reported in Table 5.7, our taxonomy
features 16 inner categories that are not covered in [208] (e.g., To Ensure Better
Mapping Between Test And Production Code), 3 inner categories that are only
partially covered (e.g., Preparing Code for Changes), and 6 inner categories (e.g.,
Forster Code Reuse) that are completely covered. We provide in our replication
package [34] a spreadsheet reporting the mapping between the two taxonomies.

In the following, we discuss each root category, reporting interesting examples
and outlining implications for researchers and practitioners, as well as highlighting
the differences with the taxonomy provided by Silva et al. [208]. The complete
list of manually analyzed PRs together with their refactorings/assigned tags is
publicly available [34].

Improve Code Design (425 instances). Unsurprisingly, a large proportion
of the analyzed refactorings are aimed at improving code design from several
perspectives [97]. In 58 of these, the refactorings are aimed at making source code
easier to be reused (see Foster code reuse in Figure 5.2). In 42% of these cases,
this was accomplished through a combination of several refactoring operations,
while in the remaining 58% specific refactorings were applied in isolation. When

54 Chapter 5. Why Do Developers Improve Source Code Quality?

Table 5.7: Comparison with refactoring motivations found by Silva et al. [208]

↑ ↑ highlights a perfect match (the motivation also emerges from their study); ↑
highlights a partial match (we found additional, specific mo-

tivations); ↓ ↓ stands for a mismatch (the motivation was not found in their study).
Root Category Inner Category Match

Improve Code Design

Foster code reuse ↑ ↑
Improve inheritance ↑
Improve encapsulation ↓ ↓
Improve maintainability ↑ ↑

Improve Understandability & Readability Improve naming ↑
Cleanup code ↓ ↓

Improve Quality of Test Code

To ensure better mapping between test and production code ↓ ↓
To simplify testing activities ↑ ↑
To automate tests ↓ ↓
To remove flaky tests ↓ ↓
To ease locating tests ↓ ↓
To simplify testing for client projects ↓ ↓

Preparing Code for Changes

For implementing a new feature ↑ ↑
For going open source ↓ ↓
For future refactoring/major change ↓ ↓
Refactor modules to prepare for next release ↓ ↓

Prevent Bugs Promote type safety ↓ ↓
Improve exception handling ↓ ↓

Other Motivations

To create separate Maven artifacts ↓ ↓
To promote API compatibility ↑ ↑
To support third-party tools ↓ ↓
To simplify API usage ↓ ↓
To allow serialization ↓ ↓
To improve performance ↑ ↑

5.3. Results 55

this happened, almost always (91%) an operation aimed at extracting a code
component from an existing one was applied. In particular, extract method
operations were performed in 70% of cases to extract a small piece of functionality
from an existing method thus avoiding code duplications and fostering the reuse
of the extracted code. For example, during the code review of the PR#626 in the
nakadi project [24], the reviewer observed that two of the implemented methods
were “almost the same except the very last line” and suggested to “extract a helper
method” in such a way to reduce code duplication and also allow other methods, in
future, to reuse the same functionality. This was accomplished through an extract
method refactoring. In other cases, the refactoring was more substantial and
directly justified by the need for reusing specific pieces of functionality, as discussed
in the PR#488 of the dropwizard project [6]. Here the contributor explains,
when submitting the PR: “I was looking at starting/stopping a Dropwizard app
in Cucumber tests and DropwizardAppRule has all the functionality I need but
obviously it doesn’t expose startIfRequired and stop methods. I’d happy to extract a
DropWizardAppTestSupport class from DropwizardAppRule”. After approval, this
triggered an extract class refactoring. This last example is interesting for several
reasons. First, extract class is a non-trivial refactoring possibly having substantial
ripple effects in the system, with the obvious possibility of introducing bugs. For
example, the discussed commit impacted a total of 499 lines of code, thus showing
that code reuse is a strong motivation for triggering refactoring operations. Second,
while many approaches to identify extract class refactoring opportunities have
been proposed (see e.g., [95, 45]), they focus on the identification of complex
classes implementing several responsibilities (i.e., God or Blob classes [56]) that
could be split into several classes. The class subject of the extract class refactoring
(i.e., DropwizardAppRule) is a fairly simple class composed by 156 effective LOC
(excluding comments and blank lines) that is unlikely to be reported by refactoring
recommenders as a candidate for extract class refactoring. To cope with these cases,
these recommenders could be combined with clone detectors [194] to factor out a
class to be used by multiple other ones. Note that these “special” cases should
complement the more standard refactoring recommendations done for complex
and low-cohesive classes. Indeed, as shown in our RQ1, classes characterized by a

56 Chapter 5. Why Do Developers Improve Source Code Quality?

low cohesion as assessed by the C3 and HsLCOM metrics are more likely to be
subject to refactoring operations.

Many (338) of the refactorings performed in the code design taxonomy aimed
at Improve Maintainability (see Figure 5.2). In this category, refactorings aimed at
improving the modularization were often implemented through simple move class
refactorings, while we rarely observed massive package reorganizations (7 cases).
This is in line with recommendations from previous literature, suggesting that
approaches performing big-bang remodularization through clustering algorithms
have limited applicability, and techniques suggesting fine-grained and incremental
adjustments to software modularization should be preferred [106, 165]. Also, it
was interesting to find out why developers decided to perform remodularization.
For example, in some cases move class refactorings are performed to group, in
specific “API-related” packages, utility classes potentially useful in different parts
of the system and/or to third-party components, e.g., PR#324 from DSpace “I
suggest to move this class in dspace-api as it will be useful to port this feature
to JSP UI as well” [8]. While these changes might look suboptimal from the
cohesion-coupling point of view (i.e., they could generate a low-cohesive package)
they are justified by a clear rationale. As also observed for the approaches
automating extract class refactoring, tools recommending modularization solutions
(see e.g., [35, 127, 143, 183]) just strive to maximize the cohesion-coupling trade-
off. Given the availability of historical data, they could also learn from previous
changes what a meaningful modularization is from the developers’ perspective.
While learning code changes is already an active research field [225], no previous
work has attempted to design refactoring recommenders learning from developers’
activities what a meaningful refactoring is in a given context.

Removal of code clones is one of the two motivations behind the refactorings
in the Adhere to DRY principle (Don’t Repeat Yourself) subcategory (child of
Remove Code Smell), together with the removal of unnecessary code. Note that
this category is strictly related to the Foster code reuse one. Indeed, some of
the analyzed PRs fall into both these categories because factoring out duplicates
also creates a more generic code element (e.g., a class or method) that can be
further reused. For example, PR#366 in the fineract project [2] can be seen as
an example of improving reusability by adhering to the DRY principle, since it

5.3. Results 57

features an extract method refactoring suggested by the reviewer and avoiding code
duplication while allowing the reuse of a piece of functionality now embedded in
the extracted method. This confirms once more the relevance for practitioners of
clone detectors [194] as well as of refactoring tools aimed at removing clones [223]
and encourages their use in the Continuous Integration (CI) pipeline, as advocated
by Duvall et al. [81].

Concerning the removal of unnecessary code, besides cases simply related to
removing unused imports, we found refactorings performed to remove redundant
code (e.g., PR#1481 from testng [3]). While some work has investigated the
automatic identification of redundant code in software systems [133, 118], the
provided support is still very limited to specific redundancy cases (e.g., those
related to API usages [118]) or programming languages (e.g., LISP [133]). The
55 cases related to refactorings motivated by the removal of unnecessary code
suggest room for more research in this field.

Concerning the operations targeting a better distribution of the responsibilities
across code components, one very interesting example comes from the DSpace

project (PR#1083 [7]). This PR implements a massive refactoring aimed at
ensuring a better “separation of concerns/responsibilities” for an API module, and
has been subject to votes by the community, because the refactored API was not
backward compatible. Despite this issue, the merging has been approved thanks
to the numerous positive advantages brought by the refactored API: “makes
it much easier to achieve future goals on our Roadmap, especially, moving us
towards potentially better support of third-party modules”, “it cleans up one of the
messiest areas of our existing API [. . .]”. This case shows the non-trivial trade-
offs that developers should consider in case of massive refactoring: for example,
smartphones have limited battery life and they require software optimized to
reduce the energy consumption. State-of-the-art refactoring recommenders [221,
45] ignore the heterogeneity of modern software, and the different priorities
that non-functional requirements, possibly more important (e.g., maintainability,
performance, backward API compatibility) may have in different contexts. Future
work should consider integrating into these recommender systems the possibility
to define a priority list of non-functional properties that developers are or are not

58 Chapter 5. Why Do Developers Improve Source Code Quality?

willing to sacrifice when applying refactoring. This would allow generating more
meaningful and sensible refactoring recommendations.

The two sub-categories described above (Foster code reuse and Improve main-
tainability), i.e., the ones highly represented in our study, have a complete
matching with the motivations identified by Silva et al. [208]. This confirms their
findings, and stresses once more the importance from the developers’ perspective
of improving both the reusability and maintainability of code, especially when
discussing whether to accept or not a PR.

Other less represented subcategories in the Improve code design taxonomy
include refactorings aimed at improving the usage of inheritance (21 instances)
and the ones working on the encapsulation (5). In these cases, considering the
low number of instances belonging to each category, it is quite obvious that while
comparing with the motivations by Silva et al. we found that these reasons did
not emerge from their study. The only exception is the one related to inheritance
that is only partially covered, as shown in Table 5.7.

Improve Understandability & Readability (468 instances). The ma-
jority of refactorings we found in the manually-analyzed PRs aim at improving
understandability and readability of source code. This supports the findings of
RQ1, which indicate a significant correlation (and high OR) of readability metrics
with refactoring operations. In this category, 146 refactorings were done to improve
naming. The observed renamings had a variety of motivations (see Figure 5.2),
ranging from fixing typos to keeping naming consistency throughout the project.
Naming decisions were often carefully discussed, showing their importance for
developers. An interesting example of discussion about naming is the PR#150
of the optaplanner project [11]. The original intent of the PR was to add a
new feature, but the author explicitly asked for feedback about the naming of a
new interface he extracted: “we should discuss the naming and the usage of the
SolverProblemBenchmarkResult interface”. Such a name was changed after the
discussion: “renamed to BenchmarkResult as agreed in a meeting”. In the same
PR the developers also discussed several other names in the contributed code.
For example, the PR author introduced a boolean field named hasNonDefault-

SubSingleCount; another developer asked why such a value was introduced, since
the name was not clear enough. The discussion triggered not only a renaming

5.3. Results 59

operation, but also a type change (from boolean to integer) to represent additional
information that could be useful in future: “maximumSubSingleCount is the best
name here, as it gives us more potential information for the future at no cost”.

We also found cases of renaming aimed at better reflecting the code responsibil-
ity (38). A representative example is in PR#251 of the kafka-connect-elastic-

search project [5], in which one of the reviewers suggested to rename a test method
to something very specific and clearly depicting the responsibility of the test case:
“you could change the name of the test method to something like testCreate-

AndWriteToIndexForTopicWithUppercaseCharacters. I like test names that read
like the condition they are testing”. Other cases aimed at removing linguistic
antipatterns defined in the literature by Arnaoudova et al. [38] and known to
have negative effects on the understandability of code [87]. This is only one of
the studies linking the poor quality of identifiers to difficulties experienced by
developers in code comprehension [217, 131, 130, 76, 129]. Our findings show that
developers care about the quality of identifiers and carefully discuss their choice.

Most of the rename refactoring recommendation approaches aim at fostering
the usage of consistent naming [28, 139], while only a single attempt has been
done, to the best of our knowledge, to recommend rename method refactorings
with the goal of better reflecting the responsibilities implemented by the code [32].
Our results show that more effort in this direction is needed since this is the
scenario in which developers more frequently perform rename refactorings. Also,
the high number of rename refactorings implemented as a consequence of code
review indicates the possibility to mine this data to evaluate automated rename
refactoring techniques [28, 139]: the originally submitted identifier represents an
opportunity for rename refactoring while the one adopted after the code review
process can be used as reference of a good refactoring. This would avoid the
evaluation of the rename refactoring techniques in artificial scenarios.

Looking at Table 5.7, and considering that developers can modify the names of
packages, classes, variables or methods for different reasons, we can state that our
Improve Naming category is only partially covered by the motivations reported
in the previous study by Silva et al. [208]. For instance, while both studies
identify the need for adhering to naming conventions, for keeping consistency
in naming, or for better representing code responsibilities, in our taxonomy we

60 Chapter 5. Why Do Developers Improve Source Code Quality?

also found cases where the renaming occurs to fix typos, shorten identifiers and
expand abbreviations. The latter challenge (i.e., expansion of abbreviations in
code identifiers) has been vastly investigated in the software engineering research
literature (see, for example, the works by Lawrie et al. [128]), with approaches
proposed and empirically evaluated. However, to the best of our knowledge, there
are no ready-to-use tools that, for example, can be integrated in a CI pipeline
and can recommend to developers identifiers to expand at commit time. The
implementation of such a tool is a clear next step to perform in this research field.

We also found several refactorings implemented to make the source code less
confusing. Such changes involved improvements to both names and structural
aspects. For example, we found an interesting example in PR#599 of the htsjdk

project [19]. Note that the refactoring performed in this PR is an extract interface
rather than a rename, that resulted in the interface CRAMReferenceSource imple-
mented by the class ReferenceSource. The main goal of the refactoring was to
improve code reusability: for this reason, we include such a case in our taxonomy
under the Foster code reuse category. However, it is interesting to discuss this
refactoring in the context of renaming: during the code review process, one of
the reviewers argued that the chosen names were confusing because he expected
an inheritance relationship in the opposite direction (i.e., CRAMReferenceSource
implements ReferenceSource) by reading the names alone. As a consequence,
ReferenceSource was renamed to CRAMReferenceSourceImpl, making the rela-
tionship between the two classes more evident. This naming issue could be
characterized as a sort of linguistic antipattern, and shows that the original
catalog of these antipatterns defined by Arnaoudova et al. [38] could be expanded
by analyzing recommendations provided by reviewers in a code review process.

Finally, we found many cases in which the developers made more generic clean-
ups in the code (162 instances), to improve the coding style and, in some cases, the
quality of error messages and logging. Some of these changes were performed as a
result of tools’ recommendations. For example, the PR#346 of the spring-amqp

project [22] fixes warnings raised by SonarQube. This suggests that developers are
willing to fix issues identified by automatic tools. However, in our sample of PRs,
SonarQube was the only tool mentioned in many discussions. Note that a specific
analysis of the extent to which static analysis tool warnings are removed was not

5.3. Results 61

in scope of our work (but rather addressed in related literature [73, 121, 210]);
this is the reason why, in RQ1, we only considered two tools — DECOR and
PMD — that could raise warnings that triggered refactoring operations.

More than 60% of the clean-up operations were done as part of the original
intent of the PRs. Differently from other categories, we found very little discussion
among developers regarding clean-ups. This is likely due to (i) the limited impact
that these clean-ups generally have; and (ii) a general agreement on the need for
improving code quality.

For these instances, we analyzed the values of readability metrics pre and post
refactoring operations made to improve understandability and readability. We
found that the readability of such file – measured with the suite of metrics provided
by Scalabrino et al. [199] – improves in a small minority of cases. Indeed, the
readability improves in 32.1% of files and worsens in 38.4% of files. Furthermore,
files maintain their readability level in 29.5% of the total of files. We obtained
a similar trend also with the metrics by Buse and Weimer [59]. Specifically, the
readability improves in 8.3% of files and worsens in 12.3% of files. In addition,
the readability remains stable in 79.4% of files.

Prevent Bugs (26 instances). These refactorings are motivated by the will
to prevent bugs, for example through a better exception handling or by promoting
type safety. Note that these are changes that preserve the program’s behavior.
For this reason, we contemplated them in our taxonomy, even if they do not
belong to the canonical cases of refactorings, such as those defined by Fowler [97]).
This is why those categories are completely uncovered in the 44 motivations
provided by Silva et al. [208]. Indeed, they studied the reasons behind specific
refactoring operations that are detected by RMiner and inline with those defined
by Fowler [97].

Some PRs are explicitly motivated by the will of improving the exception
handling mechanism. This is the case for PR#933 of the nakadi project [25], in
which the developer implements several different refactorings (e.g., rename class,
move class) to improve the overall handling of the exceptions in the project. Other
PRs, instead, simplify the handling of exceptional conditions. For example, in
PR#1067 from the htsjdk project [18], the developer fixes a possible issue caused
by the invocation of the method mFile.getSource() within several exception

62 Chapter 5. Why Do Developers Improve Source Code Quality?

messages. Indeed, in specific cases the mFile object could be null, leading
to the throwing of a NullPointerException. For this reason, the developer
implemented an extract method refactoring, creating the method getSource()

which returns the value of mFile.getSource() when mFile is not null, and a
constant string otherwise. This allowed to easily prevent NullPointerException
by replacing the many usages of mFile.getSource() with an invocation to the
newly created getSource() method. This is an interesting application of extract
method refactoring, since it aims at refactoring a very small clone, i.e., a method
invocation reused, in the same way, in different parts of the code. Extract method
is widely applied in the refactoring of clones [125]. However, the focus is usually on
more complex clones sharing several statements, rather than on the identification
of refactoring opportunities that, as in the discussed case, involve few code tokens
but can have a positive impact on the reliability and maintainability of the system.

Another very interesting example is the PR#238 from the minio-java project
[16]. Here the developer replaced general, unchecked exceptions such as Null-

PointerException, with more specific and checked ones. With “unchecked” we
refer to those exceptions that in Java can be thrown without declaring them in
the method signature. For example, in the specific case of PR#238, the method
getClient of the class Client was throwing a NullPointerException in specific
situations: note that this was an intended behavior of the method, i.e., there
was an explicit throw new NullPointerException() in the code. However, in
the method signature the only visible exception was MalformedURLException.
Through the implemented changes, including class rename refactoring, the more
general exceptions have been specialized (e.g., to ClientException in the case
of the getClient method), forcing the exposure in the signature of the thrown
exception. This has the double effect of (i) giving developers compilation errors
if they do not catch the thrown exception, thus preventing bugs; and (ii) using
more expressive exception names. Note that the usage of unchecked exceptions in
Java code should not be considered as a “bad smell” since, in general, unchecked
exceptions should be used to reveal bugs, while checked exceptions to throw errors
that the program should handle [68]. However, the misuse of unchecked exceptions
where checked ones are needed can lead to higher chances of introducing bugs (as

5.3. Results 63

in the case of PR#238). The automatic identification of these situations is, to
the best of our knowledge, a problem still not faced in the research literature.

Preparing Code for Changes (41 instances). This category includes
refactorings facilitating the implementation of new features or of other planned
activities. Refactorings preparing for future changes are usually implemented in
dedicated PRs including major refactorings.

Looking at the comparison highlighted in Table 5.7, it is possible to state that
our taxonomy provides more insights compared to the list of motivations in the
previous study. Indeed, the category Preparing Code For Changes contains some
motivations already highlighted in [208] while others missed such as the need for
refactoring operations aimed at moving to open-source. An interesting case in this
category is represented by PR#317 of the sagan project [21]. As mentioned in
the title, the goal of the PR is to “refactor in preparation for open source”. Note
that this is kind of an exception in our taxonomy, and we decided to put it into
the Preparing Code for Changes category just because open sourcing a project
is, in some way, a decision taken to foster the future evolution of the project.
Code refactoring is one of the action items in a checklist defined in issue #179
for preparing the project to be open-sourced [20]; other action items included,
for example, the introduction of installation and configuration instructions. This
suggests that an appropriate code cleanup, including refactoring, should be part
of packaging checklists when putting a project in the open-source.

Another example of refactoring performed to accommodate other changes is
in PR#136 of the zhcet-web project [26], where the developer extracted the class
CryptoUtils from SecurityUtils to accommodate the implementation of new
functionalities (e.g., the decrypt method) in a suitable class (i.e.,CryptoUtils).

Tools supporting preemptive refactoring are lacking in the literature. Indeed,
the only effort in this direction is the work by Pantiuchina et al. [169] in which,
however, the focus is on identifying classes that will be affected by code smells
in the future, thus recommending them for a preemptive refactoring action. Our
manual analysis indicates that a novel family of recommender systems able to
suggest developers how to refactor the code in order to “accommodate” the
implementation of a given change request could be valuable.

64 Chapter 5. Why Do Developers Improve Source Code Quality?

Improve Quality of Test Code (49 instances). As the production code
might be in need for refactoring, this also holds for test code [227]. The quality
of the test code is also assessed in the context of PR discussion and code reviews,
as observed by Spadini et al. [211]. We found 49 test code refactoring cases, 37%
of which performed with a specific type of refactoring operation, and 63% with
multiple operations. The observed refactorings include changes similar to those
performed on production code, e.g., better distribution of responsibilities to have
a better mapping between test and production code, see e.g., PR#1071 in the
error-prone project [10] in which the author comments “[...] separate the tests
into logical classes”.

Other cases we found concern the removal of flaky tests which introduce non-
determinism in test outcome [149]. In the microprofile-fault-tolerance project,
the PR#363 [9] aims at removing flaky test: “The tests testCircuitInitial-

SuccessDefaultSuccessThreshold and testCircuitLateSuccessDefaultSuccess-

Threshold were moved to an independent test to avoid dependencies between tests
that use the same bean [...] that can generate possible failures when the circuit
breaker leaves open [...]”.

More interesting and specific for test code are the refactorings performed to
improve testability. In PR#73 of the WPS project [1] a developer performed an
extract class refactoring in production code motivated by the will of simplifying
integration testing: “The functionality to create a GTVectorDatabinding out
of shapefiles was removed from the GenericFileData class and moved to a new
GenericFileDataWithGT class. Due to this change, the processes used for the
integration tests do not depend on GeoTools anymore [...] also the tests now
use only local resources”. This example shows how refactoring performed on
production code can have an impact on many software quality aspects (in this
case, testability). Cases like this one suggest to always ponder the positive and
negative impacts of refactoring beyond maintainability e.g., some refactoring
actions can aid testability, while others might improve maintainability at the
cost of testability. Clearly, considering this aspect in the context of a refactoring
recommender is far from trivial, given the need for automatically assess the
testability of a given component. Besides, the presence of refactorings specifically

5.3. Results 65

aimed at improving testability shows room for approaches aimed at recommending
such kind of operations.

While the motivations of refactorings for simplifying testing activities were
already presented in the work by Silva et al. [208], our taxonomy provides other
new categories such as those aimed at removing flakiness, at automating testing
activities, or at improving the overall testability of the project under development.

Other Motivations (108 instances). In this category, we put all
motivations that did not find their place among other root categories.

Thirty-seven PRs were performed to improve software performance. This
is not surprising and in line with Fowler [97], who observed that the internal
program structure is closely related to its performance due to better optimization
opportunities. Moreover, the latter also emerges from the motivation provided
in the previous study by Silva et al. [208]. Also, our quantitative results of RQ1

indicate that refactorings have a high chance to occur on classes frequently subject
to bug fixes, which may have affected performance, especially in the case of quick
patches. A concrete example is the PR#1577 of AmazeFileManage [23] Android
application. In a linked issue, a user reports that when she is “copying a large
file using SFTP, the process can take more than 1 minute, so the phone goes in
stand by mode”. PR#1577 improves the I/O performance of this feature through
refactoring.

This example confirms the importance of specific non-functional attributes (in
this case, performance) for different types of software (in this case, a mobile app).
Also, once again, it points to the need for developing refactoring techniques able
to consider this heterogeneity of non-functional requirements rather than mainly
focusing on maintainability as done in state-of-the-art refactoring tools [221, 45].
Indeed, to the best of our knowledge, only a few authors have developed refactoring
techniques having the improvement of performance as the main objective [79, 243,
37]; however, these approaches either target very specific performance issues [79,
243] or are designed to work on models rather than on source code [37].

Link between qualitative and quantitative reasons.
Quantitative and qualitative reasons pushing for refactoring match each other.

Indeed, if we compare metrics with qualitative reasons, it is interesting to note
that each metric matches at least one of the qualitative reasons. For example,

66 Chapter 5. Why Do Developers Improve Source Code Quality?

• LackStructRead and LackComRead match with Improve Understandability
& Readability;

• LackC3, NOM and HsLCOM match with Improve Maintainability. Specifi-
cally, the first two metrics match with Better distribute responsibilities of
Improve Maintainability;

• NOPM matches Improve Maintainability.

The same considerations hold also for process metrics. In particular,

• FilesRelatedToIssueFix and AvgLinesImpactedInCommit match with Prevent
Bugs;

• DistanceNextRelease and DistancePreviousClasses matches with Preparing
Code for Changes.

We also observe that code design flaws metrics, such as IsGodDecor, Is-
CDSBPDecor, IsComplexDecor, IsFuncDecDecor, IsSpaghCodeDecor, match with
Improve Maintainability, while ExcessiveParameterList matches with Improve
Inheritance and TooManyList and TooManyMethods match with Improve Un-
derstandability & Readability. Finally, the remaining quality metrics match with
Improve inheritance (i.e., WMC, DIT, NOC, and RFC), with Improve maintain-
ability (i.e., CBO and NOSM), with Improve Encapsulation (i.e., NOF, NOSF,
and NOSI), and with Foster Code Reuse (i.e., LOC).

We conclude RQ2 stating that quantitative and qualitative reasons pushing
for refactoring match each other. In the case of low-cohesive classes, developers
need to increase the cohesion of those class. Thus, once that developer performs
the relative change, the related metrics were undergoing a positive change. This
improvement has been to analyze also in the readability metrics.

5.4 Threats to Validity

Construct validity. A source of inaccuracy is represented by the automated
refactoring detection. However, RMiner has been reported to exhibit a very high
precision (98%) and recall (87%) [222]. This threat is mitigated at least in RQ2,

5.4. Threats to Validity 67

where refactorings have been manually reviewed. To identify bug fixes, we used an
approach matching regular expressions onto commit messages [91], as also done
in previous work [189]. To limit threats due to this heuristic [36], two authors
independently analyzed, for each project we considered, a random sample of
commits classified as a bug fix to mark true and false positives. After discussing
disagreements, only 8% of the analyzed commits resulted to be false positive bug
fixes (mostly related to CheckStyle fixes).

In RQ1, we only analyzed the correlation between the presence of any refactor-
ing with various metrics. While it may be interesting correlating specific types of
refactorings with metrics, our qualitative analysis showed that refactoring goals
are often achieved through a combination of refactorings. To build the explanatory
model of RQ1, we have selected a broad set of metrics capturing different aspects
of software product and process. It is important to note that the aim was to
correlate such metrics with the presence of at least one refactoring action of any
kind. Building models for specific refactoring types is out of scope of this study
and could, possibly, require to identify further specific indicators.

In RQ2, we identified refactoring-related PRs as those having (i) one of their
commits containing a refactoring identified by RMiner, and (ii) a refactoring-
related keyword in their title. Such selection criteria can result in false negatives
(i.e., missing some refactoring-related PRs) and, in turn, this may have resulted
in missing categories in our taxonomy. Indeed, it is possible that our taxonomy is
only representative of the motivations behind PRs that can be captured through
the adopted selection criteria.

As context for our study we targeted non-personal/toy projects having a
substantial change history to study and being active. For this reason, we defined
a number of selection criteria (i.e., at least 5 contributors, 1 fork, 500 commits,
100 PRs, and one recent commit) that, however, may fail in capturing the type of
systems we were interested in.

Internal validity. In the quantitative analysis (RQ1), although we tried to
capture factors from different dimensions (i.e., different kinds product and process
metrics), there could be many other factors that could have influenced the need
for refactoring. We mitigated this threat through (i) the use of a mixed-model
considering project as random effect, and (ii) the qualitative analysis of RQ2. It is

68 Chapter 5. Why Do Developers Improve Source Code Quality?

important to note that the aim of RQ1 is to mainly identify correlations between
metrics and refactoring activities, and not about claiming any causation. Only
the qualitative analysis of RQ2, taking into account developers’ discussion, can
highlight the rationale for refactoring actions.

Conclusion validity. In RQ1, we performed a careful preprocessing of data
and variable selection to avoid multi-collinearity, and normalized metrics to allow
properly interpreting the ORs.

External validity. Our analysis is limited to a sample of 150 Java open
source projects hosted on GitHub, and the qualitative analysis to 551 PRs. We
do not claim the generalizability of our findings to other programming languages
or to industrial systems. For this reason, a further investigation on a more diverse
set of projects, developed with different programming languages and belonging to
both open and closed-source is highly desirable. Also, it is worth mentioning that
in our manual analysis we only considered PRs for which RMiner identified at
least one refactoring operation. This means that we did not consider PRs that,
for example, targeted a complete remodularization of the system that involved
refactoring operations not captured by RMiner.

5.5 Final Remarks

The goal of this study is to analyze the motivations behind refactoring op-
erations, observing code and real discussions of developers. In this study we
quantitatively and qualitatively analyzed the reasons behind refactoring oper-
ations performed by developers. Our quantitative analysis highlighted that (i)
code readability is the product-related factor mostly correlated with refactoring
operations, and (ii) process-related factors such as source code change- and fault-
proneness and, especially, the experience of developers changing a code component,
play a significant role in triggering refactoring operations. Our qualitative analysis
resulted in an extensive taxonomy of 67 motivations behind refactorings, relating
to quantitative results where possible. We have made the study material and data
available in our replication package [34].

From results of our study, we can derive the following lessons learned:

5.5. Final Remarks 69

• Developers improve code design in multiple classes, but this can create
problems in many cases. For example, extract class refactoring is a non-
trivial refactoring that can take to ripple effect and multiple bugs. However,
this operation can maximize cohesion and coupling.

• We confirm previous studies, i.e., fine-grained techniques and incremental
adjustments are preferable to approaches of big-bang remodularization.

• Clone detectors help to remove clones and to promote the use of the Con-
tinuous Integration (CI) pipeline. Regard the removal of unnecessary code,
the support is very limited for some redundancy cases (e.g., API usages) or
programming languages (e.g., LISP).

• In case of massive refactoring, developers should consider the heterogeneity
of modern software and the different priorities of non-functional requirements
in different contexts.

• Developers care about the quality of identifiers. In addition, rename refac-
toring recommendation approaches suggested a coherent name, which can
reflect variable responsibilities implemented by the code. Rename refac-
toring are often associated to a code review and this allows to create an
automated rename refactoring technique.

• Developers find useful fix issues identified by automatic tools (e.g., Sonar-
Qube).

• Extract method refactoring is a valid technique to reuse methods in different
parts of the code.

• Developers recommend appropriate code cleanup and refactoring when the
project is open-source.

• Refactoring of production code can impact on different software quality
aspects (e.g., testability).

CHAPTER 6

Do Developers Care about Code Readability?

Contents
6.1 Introduction . 70

6.2 Design of the Study 72

6.3 Results . 73

6.4 Threats to Validity 76

6.5 Final Remarks . 77

6.1 Introduction

Software refactoring is performed to improve code readability metrics. Indeed,
developers declare to do refactoring to improve code readability, as previously
shown in Chapter 5 [171]. This result confirms previous searches: “readability” is
a fundamental and highly desirable property of the source code.

Code readability is the very first step during incremental change [51, 186].
This activity is required to perform concept location, impact analysis and the

70

6.1. Introduction 71

corresponding change implementation/propagation. Assuring source code read-
ability becomes imperative in modern open-source software development due to
its collaborative and geographically distributed character [51, 186]. Erlikh [86]
has shown that during software evolution tasks developers spend plenty of time
maintaining the existing code (often written by others), far more than writing
code from scratch. Indeed, when developers have to understand an unfamiliar
code, they invest 35% of their time to navigate it because they need to collect
information on code [123]. Even if sometimes expert developers are more able
to understand a code because they use recurring and structured comprehension
strategies [192].

From the achieved results of the previous study (Chapter 5), we can deduce that
any developer would prefer working on readable code rather than on unreadable
code. This deduction is the result of their willingness to do refactoring. It is less
evident, instead, to what extent developers think that making an effort to keep
the source code readable is important and worthwhile during software evolution.
Previous studies investigated the developers’ perception of code readability [170,
88]: such studies provide implicit evidence that code readability matters to
developers since some commit messages mention the tentative improvement of
code readability, it can be deduced that developers strive to make the code more
readable. To the best of our knowledge, no previous work tried to look at explicit
evidence that developers care about code readability in software evolution.

For this reason, in our study, we wanted to understand what is the developers’
perception of code readability. Thus, we conducted a survey with 122 developers
to verify to what extent code readability is important to them while writing or
reviewing code. To do this, we constructed a survey composed by four questions,
which could be answered using a 5-point Likert Scale [136]. After, we distributed
the survey on general purpose and specific purpose social networks. Finally, we
invited other possible participants through apposite invitations. As result, we
found that the vast majority (∼83.8%) often take code readability in account
when writing code.

The remainder of this chapter is organized as follows. In Section 6.2 we report
the design of our study and in Section 6.3 we report the results of our study.

72 Chapter 6. Do Developers Care about Code Readability?

Finally, Section 6.4 discusses the threats to validity of the studies and Section 6.5
concludes this chapter.

6.2 Design of the Study

The goal of our study is to understand the perception of developers about
code readability, i.e., to what extent they consider readability important while
writing or reviewing code, and if they actively modify the code to make it more
readable.

With our study we want to answer the following research question: What is
the developers’ perception of code readability? To answer such a research question,
we surveyed software developers. The survey consisted in four main questions:

Q1 When you write code, to what extent do you take into account code read-
ability? We ask this question to understand if developers think about code
readability while producing new code.

Q2 When reviewing code changes performed by your peers, to what extent do you
consider the impact of the change on code readability? We ask this question
to understand if developers think about readability when discussing about
the approval of a change.

Q3 How often do you make changes to improve code readability? With this
question we want to understand if developers sometimes pause their activities
specifically to improve the readability of previously written code.

Q4 How frequently did you experience a big change in code readability (positive
or negative) in the projects you worked on? With this final question we
want to understand what is the perceived frequency of readability changes.
We later compare the answers to this question to the results we obtain in
our subsequent study (Section 7.4).

The first three questions (Q1, Q2, and Q3) could be answered using a 5-point
Likert scale, ranging from 1 (Never) to 5 (Always). Specifically, we used the
Likert scale [136] because it is usually used to measure the level of agreement or
disagreement on a symmetric agree-disagree scale for a series of statements.

6.3. Results 73

For the last question (Q4) we used a different 5-point Likert scale: the devel-
opers could choose one of the following options: (i) “Never”, (ii) “For less than
25% of the changes”, (iii) “For more than 25% and less than 50% of the changes”,
(iv) “For more than 50% and less than 75% of the changes”, (v) “For more than
75% of the changes”.

Besides, we asked demographic questions, i.e., (i) education level, (ii) occupa-
tion, (iii) experience compared to the colleagues (following the recommendation
by [206]), (iv) the three most used programming languages, and (v) the number
of contributions in open source and industrial projects.

We distributed the survey on social networks. We have chosen both general
purpose social networks, i.e., Facebook, Twitter and LinkedIn, and specific purpose
social networks, i.e., Reddit. For this last channel, we posted the invitation on
two sub-reddits in which surveys are allowed, i.e., r/SoftwareEngineering and
r/SampleSize.

Furthermore, we personally invited other possible participants (i.e., students
and developers in software companies).

Finally, we try to understand if there is a correlation between when developers
peer-review the code written by others and when developers write their code. To
do this, we report Kendall’s τ , along with the p-values.

6.3 Results

We obtained 122 responses, 77 of which by developers personally invited by
the authors (63.1%), 23 by Reddit users, 11 by Twitter users, and 11 by Facebook
users.

In Figure 6.1, we show the distribution of answers to the demographic questions
we asked. More than a 50% of the surveyed developers work in industry (65,
i.e., 53.3%), 28 work in Academia (23.0%), while 42 of them are students (i.e.,
34.4%). It is worth noting that developers could select also more than an option
for occupation (e.g., they could select both “Working in industry” and “Student”).

As for the education, 21 participants have a PhD (17.2%), 51 have a master’s
degree (41.8%), 36 have a bachelor’s degree (29.5%), a small part of them have
high school degree (14, i.e., 11.5%) instead. The five most popular programming

74 Chapter 6. Do Developers Care about Code Readability?

High School Degree Bachelor's Degree Master's Degree PhD

Education
0

10
20

30
40

50
60

Student Working in industry Working in academia Open−source contributor

Occupation

0
10

30
50

70

1 2 3 4 5

Programming experience

0
10

30
50

70

Java Python C++ JavaScript/Typescript C PHP C#

Programming languages

0
10

20
30

40

0 1−5 5 or more

Open source projects

0
10

20
30

40
50

60

0 1−5 5 or more

Industrial projects

0
10

20
30

40
50

60

Figure 6.1: Distribution of the answer to demographic questions.

languages commonly used by the developers are Java, Python, C++, JavaScript
or TypeScript, C. Most developers involved in the survey stated that they have a
similar programming experience compared to their colleagues (54, i.e., 44.3%); the
same amount of developers (54, i.e., 44.3%) think that they are more experienced
(40) or much more experienced (14) than their colleagues. Finally, only a small
portion of developers said that they are less (13) or much less (1) experienced
than their colleagues (11.4%).

We report in Figures 6.2 and 6.3 the distribution of the answers to the
four questions. We use two different colors to highlight the differences between
developers who did not contribute to any collaborative project and developers who
contributed to at least an open source/industrial project. Figure 6.2 shows the
distribution of the answers to Q1, Q2, and Q3. About 44.6% of the participants
always take into account code readability when writing source code, while 41.7%
of them often consider it. We obtained similar results also for Q2: 34.0% of
developers say that they always consider readability while peer reviewing code
and 46.6% of them often take it into account. The same trend is visible for
the answer to Q3: 40.8% of developers say that they often perform changes to
improve code readability and 31.1% of them sometimes improve it.

6.3. Results 75

Never Rarely Sometimes Often Always

Q1: When you write code, to what extent do you take
into account code readability?

0
20

50

Never Rarely Sometimes Often Always

Q1: When you write code, to what extent do you take
into account code readability?

0
10

20
30

40
50

60

Never Rarely Sometimes Often Always

Q2: When reviewing code changes performed by your peers,
to what extent do you consider the impact

of the change on code readability?

0
10

20
30

40
50

60

Never Rarely Sometimes Often Always

Q3: How often do you make changes
to improve code readability?

0
10

20
30

40
50

60

Worked on no project Worked on at least a project

Figure 6.2: Distribution of the answers to Q1, Q2, and Q3.

Never Between 0% and 25% Between 25% and 50% Between 50% and 75% More than 75%

Q4: How frequently did you experience a big change in code readability (positive or negative) in the projects you worked on?

0
10

20
30

40
50

60

Worked on no project
Worked on at least a project

Figure 6.3: Distribution of the answers to Q4.

76 Chapter 6. Do Developers Care about Code Readability?

We found that 26.2% of the participants stated that they consider readability
more when writing code than when reviewing code written by their peers, while the
opposite happens only in 13.1% of the cases. We statistically analyze the difference
between Q1 and Q2 to verify whether developers give different importance to
readability when peer-reviewing code written by others than when they write their
own code. We used the Wilcoxon rank-sum test [236] to check such hypotheses.
The difference is not significant (p-value = 0.07) and the effect size is negligible.
This suggests that developers understand the importance of readability, giving
a similar priority to code writing and peer-reviewing code. This can have many
causes, e.g., it could happen for social reasons [168].

Finally, Figure 6.3 shows that many developers perceive that big changes
in code readability are not very frequent (less than a quarter of the files for 52
developers). Considering both Figures 6.2 and 6.3, it is interesting to notice
that the contributions to projects do not seem to affect the answers given by the
developers.

Such results show that readability is very important to developers since they
(i) take it into account while writing code, (ii) value it while reviewing code
changes, and (iii) make an effort to improve it, when possible. Besides, most of
the developers perceive that readability rarely changes: we compare the perceived
results with the our empirical results in Section 7.4.

Summary of the motivating study. The large majority of surveyed
software developers care about code readability during software develope-
ment.

6.4 Threats to Validity

In this section, we discuss the affected threats that could affect the validity of
the results.

Construct Validity. One threat to construct validity is the choice of questions
for the survey because these cannot be complete and clear. One of the main
reasons can be the language because we may have written incorrect questions,
given that we are non-native English language. Vice versa, we may have written

6.5. Final Remarks 77

correct questions, but non-native English language developers could misinterpret
questions.

Another threat can be the setting of the survey question (i.e., Q1, Q2, and
Q3). These survey questions could take to positive answers over negative answers:
a developer would answer she cares about code readability just because every
good developer is supposed to care about readability, not because she really cares
about it. We tried to mitigate such a threat by making the survey anonymous.
However, there is still the risk that developers positively answer to the above
questions just to satisfy their self-esteem.

Another threat is the distribution of surveys on social networks. About specific
purpose social networks (i.e., Reddit), we posted the invitation on two sub-reddits
(i.e., r/SoftwareEngineering and r/SampleSize), but we could choose other sub-
reddits that include a large set of developers not present in the other chosen two
sub-reddits.

Internal Validity. One possible threat to internal validity is the measurement
of each single question. We use for each question 5-point Likert Scale, but the
Likert Scale could be based on 7-points. Thus, we could give more levels of
response to each single question [136].

External Validity. The main threat to the extenal validity is the involve-
ment of a large number of participants. The achievement of a large number of
participants is a very difficult goal on professional programmers.

In our study, the big main to the external validity is the achievement of
programmers through on different general purpose social networks (e.g., Facebook).
Thus, we trust that people not belonging to the software engineering world did
not participate in this survey and we obtained truthful data.

6.5 Final Remarks

Readability is one of the main activities of a developer. A d eveloper has to
read a code to change it. This activity is fundamental when more developers work
on the same code, but it is not clear to what extent it is important for a developer
to maintain readable code.

78 Chapter 6. Do Developers Care about Code Readability?

In this study, the goal is to understand what developers’ perception of code
readability is. We constructed a survey of four questions. Each question could be
answered through a 5-point Likert scale, where in three question developers could
decide their level of agreement or disagreement with the specific question and in
one question the developer could choose a specific option.

We involved developers posting an invitation on general purpose and specific
purpose social networks. The former are Facebook, Twitter and Linkedin, and
the latter is Reddit. Finally, we invited other possible participants through our
network of knowledge.

From our results, we can derive some lessons learned:

• software developers consider important code readability during their software
development activities. Indeed, they perform changes to improve code
readability.

• software developers should consider important code readability during peer
reviewing code. Indeed, developers should consider code readability also
when reviewing a code.

From these lessons learned, we try to define a model for describing code
readability evolution [175], that in this thesis will be explained in Chapter 7.

CHAPTER 7

Readability Evolution in Open Source Projects

Contents
7.1 Introduction . 80

7.2 Modeling Code Readability Evolution 82

7.3 Study I: Validation of Readability Prediction in
Software Evolution 86

7.3.1 Data Collection . 88

7.3.2 Experimental Procedure 90

7.3.3 Empirical Study Results 92

7.4 Study II: Readability Evolution 96

7.4.1 Experimental Procedure 96

7.4.2 Empirical Study Results 101

7.5 Threats to Validity 118

7.6 Final Remarks . 122

79

80 Chapter 7. Readability Evolution in Open Source Projects

7.1 Introduction

As previously shown in Chapter 5 and Chapter 6, code readability is important
for developers to the point for performing refactoring operations to improve code
readability [171, 175]. In addition, in literature, several facets have been reported
as components that contribute to making code readable [146, 164, 48]. Such
components are usage of design concepts, source code lexicon, and visual aspects
(i.e., syntax highlighting). Indeed, previous works provide empirical evidence
that structural [58, 181], visual [80], and textual [200, 199] aspects can be used
to automatically assess code readability, shedding some light on what makes code
readable or unreadable. Such studies tend to focus on a single version of a software
artifact. However, software is a palimpsest with subsequent changes applied on
top of the previous ones.

This is why one can plausibly expect source code readability to be an outcome
of a complex process involving multiple actors and revisions. To the best of our
knowledge, the literature provides only few hints on how readability changes, why
some parts of the system start to become less readable and what developers do to
prevent it. Lee et al. [132] explored 210 open source Java projects to study the
existing relationship between source code and violated coding convention. They
found that code readability is affected only by some of such code violations (such
as Javadoc-related ones), while it is not affected by others (e.g., class design-
related). Spinellis et al. [214] studied the evolution of programming practices
in Unix and, among the other aspects, they considered readability using some
common readability metrics, such as statement density and comment character
density (i.e., comment characters divided by the total number of characters across
all source code files). The authors found that readability in Unix has increased
over time. Such a study provides some interesting insights on how readability
evolves; however, it is focused on a single software system and, therefore, it is
not clear if these findings are true also for other systems and other programming
languages.

Given the results of previous studies (Chapters 5 and 6), we wanted to
understand the dynamics related to the evolution of code readability during the
lifecycle of a software system. Specifically, in this study, we wanted to understand

7.1. Introduction 81

and take a closer look at how code readability changes in the evolution of software
systems. Then, we defined a model able to describe the readability evolution of
a given file in a software project. This model is a Markov chain based on two
main states, i.e., file being readable and unreadable, and two initial states, i.e.,
non-existing (when the file is not created yet) and other-name (when the file exists
with a different name). We used the most accurate tool available in the literature
[199] to decide if a snapshot of a file was readable or unreadable. Such a tool, like
the other ones in the literature, was designed to work on single code snapshots:
it is unclear what is the accuracy achieved in classifying readability transitions
(from {readable/unreadable} to {readable/unreadable}). Therefore, we re-assessed
the accuracy of the approach we used in this different context. To do this, three
raters manually validated a statistically significant sample of the transitions from
our dataset.

To estimate the underlying probabilities that a file moves from one state to
another, we measured the code readability of all the versions of source code files
taken from the history of 25 software systems with ∼83k commits. We studied
the evolution of readability at the commit level: this is the finest-grained analysis
possibly achievable looking at the revision history of a software project.

Our results suggest that unreadable files are a minority and that most of them
are unreadable since their introduction in the repositories. We observed a low
readability deterioration: in all the projects analyzed, we found that unreadable
files are more likely to become readable than the other way around.

We also manually analyzed the files for which the readability score varied
the most throughout the history of the project, to understand (i) which types
of changes (i.e., perfective, corrective, or adaptive) affect readability the most,
and (ii) why readability changes. We observed that the perfective and corrective
changes we analyzed improved code readability. On the other hand, adaptive
changes sometimes caused a significant readability reduction: most likely this
happens when developers make big changes. Based on our results, we defined
some guidelines that developers can adopt to keep the number of unreadable files
low.

The remainder of this chapter is organized as follows. Section 7.2 presents the
model we used to describe the readability evolution of a file. In Section 7.3 we

82 Chapter 7. Readability Evolution in Open Source Projects

report a preliminary empirical study in which we evaluate the performance of a
state-of-the-art readability prediction model for readability evolution classification:
we do this to understand to what extent existing models are reliable in this different
context. In Section 7.4 we report the design and the results of our main empirical
investigation, in which we analyze the readability evolution of software projects
and we try to understand which changes mostly impact code readability. Finally,
Section 7.5 discusses the threats to validity of the studies and Section 7.6 concludes
this chapter.

7.2 Modeling Code Readability Evolution

Developers use Version Control Systems (VCSs) to track evolution of software
projects. Different kinds of changes can be made to the source code: new features
are introduced (adaptive), errors are fixed (corrective) and the whole code structure
and quality is improved (perfective). Regardless of their type, changes may also
directly or indirectly affect code readability. Having a model that allows to track
the evolution of such a source code property may benefit practitioners in many
ways: for example, it can help developers while performing code reviews, i.e., a
warning may be raised when code readability deteriorates, or it can allow project
managers understanding how the code is evolving and when actions are needed.

Readability can be assessed at many granularity levels, ranging from small
snippets to whole modules or systems; anyway choosing the right granularity level
to model is not trivial. Having a fine-grained model (e.g., tracking readability at
method-level) would benefit developers when reviewing code and it would help
them understanding how single parts are evolving; but methods often appear and
disappear, they can be splitted and, therefore, keeping track of the changes would
be hard. Furthermore, having a coarse-grained model (e.g., tracking readability
at module/system-level) would be mostly helpful for project managers, since it
would give a generic idea on the health status of the project, and it would allow to
have longer tracks, since modules/systems appear and disappear more rarely; on
the contrary, this would provide small benefit to practitioners when developing or
reviewing code. We chose to model readability at file-level. Files are the smallest

7.2. Modeling Code Readability Evolution 83

units tracked by VCSs: it is easy to track their evolution, and they would be
reasonably fine-grained to help developers as well.

Before choosing the granularity level, it is important to choose how to measure
code readability to model code evolution. A readability score can be used: the
available readability prediction tools [59, 199], by default, for each given artifact
are able to output a continuous value ranging between 0 and 1. Such a score
represents the probability inferred by the classifier that the specified file belongs
to the class readable: as previously mentioned in Chapter 3, such approaches
are based on classification, i.e., they are designed to determine if a snippet is
readable or unreadable. There is no empirical evidence that such scores reflect
the source code readability level and, to the best of our knowledge, there is no
continuous readability score for source code available in the literature. Having an
automated estimation of code readability is essential for tracking code readability
evolution since it would be impractical asking developers to manually evaluate
the readability of all the versions of all the files of a software system. For this
reason, we choose to use a discrete model and, specifically, we model the code
readability evolution of a file using a state diagram.

Let us consider a project P and its revision history, {P0, . . . , Pl}. A source
file f can be in four states in a given revision Pi:

1. non-existing, if the file does not exist in Pi;

2. other-name, if the file existed in the last revision, Pi−1, but with a different
name: this helps to detect both renaming and move operations;

3. readable, if the file exists in Pi and it is readable;

4. unreadable, if the file exists in Pi and it is unreadable.

The initial state of a file can be either non-existing or other-name. When
a file is created, there is a transition from non-existing to either readable or
unreadable, depending on its readability. When a file f is renamed or moved to
fnew, the initial state for fnew is other-name and the final state is readable or
unreadable. It is worth remarking that VCSs such as git, on which our studies
described in Sections 7.3 and 7.4 are based, do not explicitly keep track of the
renaming/move operations. On the other hand, git is able to detect renaming

84 Chapter 7. Readability Evolution in Open Source Projects

and move operations when they occur: the heuristic used by git is based on
textual similarity. Regardless of the actual name, if in Pi−1 there are two files,
foo and bar, and in Pi foo is renamed in bar and bar is removed, git detects the
renaming/move from foo to bar instead of keeping the track from bari−1 to bari,
which are different files. In general, the renaming operations occur when (i) a file
is renamed/moved, or (ii) a folder which includes a file is renamed/moved. Even if
git achieves good results in tracking file renaming operations, if two files foo and
bar are similar enough and they are both renamed in the same commit (foo to
foo2 and bar to bar2), git could detect erroneous renaming operations, e.g., from
foo to bar2 and from bar to foo2. For this reason, we use two different initial
states (i.e., non-existing and other-name) to avoid mixing the two operations.
We did not take into account file deletion operations (i.e., from either readable or
unreadable to non-existing): we assume that such an operation does not depend
on the readability of a file. Instead, we assume that file deletions are rather
mostly triggered by other needs, e.g., a feature is no longer needed. Finally, every
change which is not a creation, renaming/move or deletion operation, results in a
transition from {readable/unreadable} to {readable/unreadable}.

Given a revision Pi, we can safely assume that the state of a file in Pi only
depends on the previous revision Pi−1. In other words, when developers work on
a file, they reasonably react to the current state of the file and not to past states.
For example, when a bug is fixed, this happens because the file contained a bug in
Pi−1, regardless of the fact that the bug could be also in previous versions. Even
if code from past revisions can be reused in some circumstances (e.g., commits
can be reverted), this always happens in reaction to specific properties of the
working revision. This is true also for readability evolution: the fact that a file
becomes readable or unreadable depends on the current readability of the file
rather than on its past readability. Therefore, we can say that the readability
evolution process is memoryless and it satisfies the Markov property. This allows
us to define our readability evolution model as a Markov chain.

A Markov chain is a stochastic process in which the probability of transitioning
from a state A to a state B does not depend on states attained in the past, but only
on the last state. Given a Markov chain that can attain the states {S1, . . . , Sn},
for each couple of states Si and Sj there is a probability P (Sj |Si) of transitioning

7.2. Modeling Code Readability Evolution 85

create create

non-existing

change
readable

renamerename

other-name

change
unreadablechange change

Figure 7.1: States of a source code file.

from Si to Sj . Such probabilities are usually represented in a transition matrix,
i.e., a square matrix in which both rows and columns indicate the states and a
given cell (i, j) contains the probability P (Sj |Si). Transitions not allowed have
probability 0 in the transition matrix. The sum of each row of the matrix must
be equal 1. We use a time-homogeneous Markov chain for our model: we assume
that transition probabilities are constant in the time for a given project. This
allows us to have a single transition probability for each pair of states, i.e., Si
and Sj . While such an assumption may not always hold in practice (e.g., the
probability that a file is created unreadable may change with the evolution of
a project), it helps us building a model that is easier to understand. Generic
discrete-time Markov chains can be explored in future works in order to provide
more fine-grained probabilities.

86 Chapter 7. Readability Evolution in Open Source Projects

Figure 7.1 depicts the state diagram behind the Markov model we defined.
The Markov chain we use to model the readability evolution process requires
the estimation of the conditional probabilities associated with each transition
(i.e., the transition matrix). Defining the transition matrix would allow us to
understand what is the probability that a file is created readable or unreadable,
that a readable file becomes unreadable and vice versa and whether the fact that
a file existing in the past affects the probability that it is readable. We describe
the process we used to infer the probabilities of the readability evolution model of
a given project in Section 7.4.

7.3 Study I: Validation of Readability Prediction
in Software Evolution

The goal of our first study is to understand if readability prediction models,
which were typically experimented in the context of single snippets of code, are
suited for predicting readability evolution. As previously mentioned, the two
problems are different: while state-of-the-art readability models are binary, i.e.,
they classify a snippet as readable or unreadable, the problem we try to tackle is a
8-class classification problem, where each type of transition previously mentioned
in Section 7.2 is a class. This preliminary study will allow us to better frame the
main study, reported in Section 7.4.

Our first study is guided by the following research questions:

RQ1 Which readability values lead to classification errors? While the readabil-
ity prediction model we use is binary by definition, the tool returns the
probability that the given snippet is readable (according to the underlying
logistic model). There may be ranges of values for which the accuracy is not
good enough. For example, 0.51 would indicate that, while the prediction
is readable, there is still a 49% chance that it is unreadable. This research
question aims at determining the range of readability values measured by
the state-of-the-art readability classification approach in which the model
wrongly classifies transitions. We later use the results of this analysis for
filtering out the transactions on which the model is not accurate enough

7.3. Study I: Validation of Readability Prediction in Software Evolution 87

Table 7.1: Projects considered in our study.

Project Repository URL Commits LOC

Fullcontact4j https://github.com/fullcontact/fullcontact4j 234 6K
Hibernate Metamodel Generator https://github.com/hibernate/hibernate-metamodelgen 173 10K
NITHs https://github.com/niths/niths 1,396 24K
Apache Qpid https://github.com/apache/qpid 3,367 25K
JBoss Modules https://github.com/jboss-modules/jboss-modules 790 33K
JBoss Tools JBPM https://github.com/jbosstools/jbosstools-jbpm 283 37K
Nuxeo Runtime https://github.com/nuxeo-archives/nuxeo-runtime 1,174 55K
Apache Incubator-Skywalking https://github.com/apache/incubator-skywalking 2,533 47K
hlt-confdb https://github.com/cms-sw/hlt-confdb 1,040 72K
ParSeq https://github.com/linkedin/parseq 454 75K
Xnio https://github.com/xnio/xnio 1,096 77K
OpenEngSB https://github.com/openengsb/openengsb 4,896 92K
Apache Deltaspike https://github.com/apache/deltaspike 1,541 125K
SIB-dataportal https://github.com/SIB-Colombia/sib-dataportal 104 137K
Apache Falcon https://github.com/apache/falcon 1,755 154K
IGV https://github.com/chenopodium/IGV 2,351 157K
Undertow https://github.com/undertow-io/undertow 3,820 178K
Apache Isis https://github.com/apache/isis 3,529 266K
RxJava https://github.com/ReactiveX/RxJava 4,014 332K
Apache Beam https://github.com/apache/beam 5,373 376K
Apache Qpid-broker-j https://github.com/apache/qpid-broker-j 6,530 390K
Apache Tomcat https://github.com/apache/tomcat 15,045 468K
Apache Cxf https://github.com/apache/cxf 8,532 837K
Apache Flink https://github.com/apache/flink 5,327 880K
Apache Hadoop https://github.com/apache/hadoop 7,780 1.6M

Total 83K 6.5M

88 Chapter 7. Readability Evolution in Open Source Projects

from the dataset we introduce in this chapter: we do this to make the results
of our main study are more reliable.

RQ2 Is the readability prediction model suited to assess the readability transitions?
This research question aims at measuring the accuracy of the readability
prediction model we adopted to assess readability variation in the revision
history of a software system.

7.3.1 Data Collection

The context of our study is constituted by archival data [196]. Specifically, we
have studied the history of 25 Java open source projects. We report in Table 7.1
the projects we selected, along with the number of lines of code—in ascending
order—in the last analyzed version. We chose projects with a reasonably big
revision history (at least 100 commits) and big enough to encourage developers
keeping the code readable (at least 5K LOC in their last revision). In total
we considered the complete revision history of such projects until early 2018.
Specifically, we considered all the commits from the master branch of each project
[82]. In total, we focused our analysis on ∼83k commits.

Initially, for each project we extracted the history of each file f that ever
appeared in its revision history. Given a project P and a file f that appeared
in the revision history, we tracked its versions 〈f1, . . . , fn〉. To achieve this
goal, we analyzed the commit logs extracted from the git repositories of the
projects. To do this, we only focused on Java source files (i.e., files with exten-
sion .java). When a file was created, we started tracking this given file and
measuring its readability: this resulted in the introduction of a new transition
non-existing → {readable/unreadable}; when a file was modified, we measured its
readability: in such cases, we added a new transition {readable/unreadable} →
{readable/unreadable}; when a file was renamed, we introduced a new transition
other-name → {readable/unreadable}.

We chose the tool by Scalabrino et al. [199] since it implements a comprehensive
model for automatic code readability assessment, i.e., the one which achieves the
highest classification accuracy on all the datasets currently available (based on

7.3. Study I: Validation of Readability Prediction in Software Evolution 89

the comparison performed with all the other state-of-the-art tools reported by
Scalabrino et al. [199]).

All the approaches available in the literature, including the one we used, were
validated on small snippets (e.g., methods) [58, 59, 181, 80, 200, 199]. In the
current study we want to estimate the readability of classes instead. Considering
the whole classes as snippets could mislead the classifier, since it is not trained
on such samples. For example, one of the features used in the model measures
the consistency between method-level comments and identifiers: while it would
be possible to measure such a feature at class-level by merging all the comments
for all the methods, there is no evidence that this feature is useful as well. To
compute the readability of a given class C with n methods C1, . . . , Cn we had
several options for aggregating the readability computed at method-level by the
tool. We used the arithmetic mean of C1, . . . , Cn to estimate the readability of
C. The main drawback of using mean is that it would not work properly in the
cases in which there are many readable methods (e.g., getters and setters) and a
single unreadable method [228]. However, it is worth noting that any aggregation
would have possibly distorted the readability predicted for the class and result in a
classification error. We discuss in Section 7.5 other alternatives that we discarded.
Since we aggregate the code readability measured at method-level, we exclude all
the Java interfaces, which usually only define the method signatures.

We excluded from our study the interfaces and the enums, which usually do not
provide the implementation of methods. We trained the classifier of Scalabrino
et al. [199] with all the Java snippets and these are from the union of three
readability datasets currently available [59, 80, 200], also performing features
selection, as suggested in the original paper. The tool and the datasets are the
original ones released by the authors, publicly available1.

The tool we used to estimate the readability of a class returns a value between
0 and 1 for a given snippet. Such a number indicates the probability that the
snippet is readable according to the logistic regression model: a readability of
1 means that the classifier is confident that the snippet is readable, while a
readability of 0 means that the model is confident that the snippet is unreadable.
In general, a value greater than 0.5 means that it is more likely that the snippet

1https://dibt.unimol.it/report/readability/

90 Chapter 7. Readability Evolution in Open Source Projects

is readable rather than unreadable. Therefore, we use 0.5 as a natural threshold:
we say that a file is readable if its readability is greater than or equals to 0.5 and
unreadable otherwise.

7.3.2 Experimental Procedure

To answer RQ1, we used the dataset provided by Pantiuchina et al. [170]. Such
a dataset includes 1,282 commits in which the developers explicitly mentioned
that they improved code readability. The dataset includes readability values
measured before the commit (Rbefore) and after (Rafter), besides other metrics.
As a first step, we associated to each commit the corresponding transition (i.e.,
{readable|unreadable} → {readable|unreadable}) based on the Rbefore and Rafter,
using the same procedure we used to build our dataset. Then, we extracted from
such a dataset all the readability transitions classified by the tool as readable
→ unreadable (i.e., so that Rbefore ≥ 0.5 and Rafter < 0.5). These are the only
cases for which we are reasonably sure that the tool made a classification mistake.
Indeed, if the predicted transition is unreadable → readable, this agrees with what
developers claimed; on the other hand, if the predicted transition is readable →
readable it can still be true that there was an improvement in readability; even if
the predicted transition is unreadable → unreadable, again, there might have been
an improvement to some methods, but not big enough to make the file become
totally readable.

Given the subset of transitions on which the tool strongly disagrees with
the developers’ claims, we manually analyzed such transitions and excluded the
ones on which the tool clearly did not make a mistake (i.e., the developer said
that the readability increased but it actually decreased). To do this, two of
the authors of the study (with 7 and 10 years of Java programming experience)
independently analyzed all the selected transitions and they openly discussed
the ones on which at least one of them disagreed with the commit message. We
discuss such cases in the results and we explicitly mention the reason why we
decided that, for such cases, the developers were wrong. Finally, we considered
the range [min(Rafter),max(Rbefore)] as the range in which the tool most likely
makes classification mistakes: excluding transitions which involve readability
values within this range would allow us to have no explicit classification mistakes

7.3. Study I: Validation of Readability Prediction in Software Evolution 91

on the dataset by Pantiuchina et al. [170], for which we have an oracle provided
by the developers themselves. We use min(Rafter) as lower-bound because the
tool classified the class as unreadable after the commit, i.e., Rafter will be lower
than 0.5; similarly, we use max(Rbefore) as upper-bound since the tool classified
the class as readable before the commit, i.e., Rbefore will be higher than 0.5. We
excluded all the transitions in our dataset that had a readability value in such a
range to minimize the classification error in all the other research questions.

To answer RQ2, we considered a significant random stratified sample of our
dataset. Such a sample contained 271 transitions out of the total 346,337 (90%
confidence level, 5% confidence interval). The strata of the sample were all the eight
possible transitions types (i.e., created → readable, created → unreadable, other-
name → readable, other-name → unreadable, readable → unreadable, unreadable
→ readable, unreadable → unreadable, readable → readable).

Three of the authors of the study, (with 5, 7, and 10 years of Java program-
ming experience), independently reported their agreement with both the binary
readability values computed by the tool for each transition (i.e., Rbefore and
Rafter). To do this, we used a 5-point Likert scale from -2 to +2, where “-2”
means “I totally disagree with the tool” (e.g., if the tool says that the commit is
readable, the evaluator thinks that it is unreadable without any doubt) and “+2”
means “I totally agree with the tool” (e.g., if the tool says that the commit is
readable, the evaluator thinks that it is readable without any doubt).

In a first phase, at least two authors of the study evaluated each transitions
from the sample. Then, all the evaluators discussed the cases in which there was
a disagreement between the two evaluators involved in the first phase and after
that, they resolved the disagreements in an unanimous manner. In Section 7.3.3
we report the details about the scores given by the annotators.

After performing a manual classification, we determined that transitions
occurred in the following way: we kept the binary values of Rbefore and Rafter
when the authors agreed with them (evaluation greater than 0) and we swapped
them when the evaluators disagreed (evaluation lower than 0). For example, if
the tool classified a given transition as readable → unreadable and the manual
evaluation was (-2, +2), we inferred that the actual transition occurred was
unreadable → unreadable (i.e., we swapped the first value).

92 Chapter 7. Readability Evolution in Open Source Projects

Therefore, at the end of the manual evaluation, we had both a transition
automatically predicted by the tool and an oracle transition. We report precision
and recall on this sample of transitions for each class we took into account (i.e.,
each transition type), using the following formulas:

precisiont = TPt
TPt + FPt

,

recallt = TPt
TPt + FNt

,

Ft = 2 ∗ precisiont ∗ recallt
precisiont + recallt

,

where:

• TPt (or true positive for transition t) indicates the number of cases for which
the tool classifies a transition as t and our evaluation confirms that;

• FPt (or false positive for transiton t) indicates the number of cases for which
the tool classifies a transition as t and our evaluation does not confirm that;

• FNt (or false negative for transiton t) indicates the number of cases for
which the tool classifies a transition as different from t and our evaluation
does not confirm that;

• TNt (or true negative for transition t) indicates the number of cases for
which the tool classifies a transition as different from t and our evaluation
confirms that.

We report in Table 7.2 a summary of the dataset we used to answer each
research question in this first study. We provide a replication package [176] with
(i) the dataset we built and (ii) the data used to answer RQ1 and RQ2.

7.3.3 Empirical Study Results

We report in this section the results of our Study I for each research question.

7.3. Study I: Validation of Readability Prediction in Software Evolution 93

Table 7.2: Datasets used in the first study.

Research Question Dataset No. of transitions

RQ1 Pantiuchina et al. [170] 1,282
RQ2 Significant subset of our dataset 271

RQ1: Which Readability Values Lead to Classification Errors?

We found 20 cases in which the readability model we used classified a transition
from the dataset by Pantiuchina et al. [170] as readable → unreadable (i.e.,
Rbefore ≥ 0.5 and Rafter < 0.5). After manually analyzing such cases, we
excluded three of them: two file modifications2 were excluded because we could
not find the related commit in the repository: probably, such a commit was deleted
by the project contributors. We excluded another commit3: the modification
consisted exclusively in the deletion of Javadoc comments. It is not clear why
removing documentation, specifically in that context, should have resulted in
higher readability. For this reason, we excluded such a change.

After filtering out such three data-points, we found that the interval in which
the tool makes all the mistakes is [min(Rafter) = 0.416,max(Rbefore) = 0.600].
From a initial dataset of 457,651, we excluded 111,314 transitions with readability
values in this range from our dataset, obtaining a new dataset with 346,337
transitions. We exclude a conspicuous portion of our dataset (∼24% of the
transitions) because of this filtering. However, we think that, in this context, it is
more important having a reasonably reliable measure rather than a large number
of data-points, also given the fact that we still have many data-points to analyze.
Moreover, besides allowing us to make no mistakes on the dataset by Pantiuchina
et al. [170], the range we filter out is intuitively reasonable: we exclude transitions
on which, according to the model, there is more than ∼40% chance of error. For
example, if the predicted readability is 0.58, it means that the file is readable,
but there is a 42% chance that it is unreadable (i.e., the prediction is wrong): we
exclude such cases. It is worth highlighting that this does not mean that outside

2Commit c69c7b in the project android_packages_apps_Settings.
3Book-App-Java-Servlet-Ejb-Jpa-Jpql, commit 36861: https://git.io/fjLfp

94 Chapter 7. Readability Evolution in Open Source Projects

Table 7.3: Confusion matrix on the whole evaluated sample

Our evaluation
R → R R → U U → R U → U NE → R NE → U ON → R ON → U

To
ol

R → R 29 - - 5 - - - -
R → U 10 22 2 - - - - -
U → R 6 - 19 8 - - - -
U → U 3 3 - 28 - - - -
NE → R - - - - 30 4 - -
NE → U - - - - 14 20 - -
ON → R - - - - - - 34 -
ON → U - - - - - - 16 18

Table 7.4: Performance of the tool in transition classification.

Transition Precision Recall F-measure

non-existing → readable 88.2% 68.2% 76.9%
non-existing → unreadable 58.8% 83.3% 69.0%
other-name → readable 100.0% 68.0% 81.0%
other-name → unreadable 52.9% 100.0% 69.2%
readable → readable 85.3% 60.4% 70.7%
readable → unreadable 64.7% 88.0% 74.6%
unreadable → readable 57.6% 90.5% 70.4%
unreadable → unreadable 82.4% 68.3% 74.7%

such a range the tool is necessarily accurate: we only identified the range in which
the readability prediction was most unreliable.

Summary of RQ1. The tool by Scalabrino et al. [199] is not reliable
when the output is in the range [0.416, 0.600].

RQ2: Is the Readability Prediction Model Suited to Assess the Read-
ability Transitions?

The raters disagreed in the evaluation they performed in 46 cases out of the
407 cases analyzed (11.3% of the cases), including the evaluation of the readability
both before and after the commit: as previously mentioned, such cases were
discussed by all the evaluators and consensus was reached on all of them. As for

7.3. Study I: Validation of Readability Prediction in Software Evolution 95

single snapshots, the raters agreed with the tool in 82% of the cases. This result
is in line with the accuracy reported in the original study (i.e., ∼84%).

As for transitions, we report in Table 7.3 the confusion matrix for the 8-class
categorization problem. Also, in Table 7.4 we report precision, recall, and F-
measure obtained on the samples we manually evaluated. We found that the tool
by Scalabrino et al. [199] has a high precision in classifying some transitions,
mostly the ones in which it is involved the state readable (e.g., the transition
non-existing → readable has the 88.2% of precision with the 68.2% of recall), while
it has a high recall for other transitions, e.g., unreadable → readable, with 90.5%
of recall and 57.6% of precision.

In general, the results show that the tool is less accurate when it is used to
classify transitions compared to when it is used to classify single versions of a file.
This may be due to the fact that classification problem has two possible cases:
a case happens when the file already exists and a case when the file is created
or renamed. Indeed, if the file already exists, we have four possible classes (i.e.,
readable → readable, readable → unreadable, unreadable → readable, unreadable
→ unreadable). Instead, if the file is new or is renamed, the classification problem
involves two classes (i.e., non-existing (or other-name) → readable and non-
existing (or other-name) → unreadable). The tool needs to correctly classify two
versions of a file to rightly classify a transition, which is harder than correctly
classifying just a single snapshot. It is worth noting that it is not trivial correctly
classifying even transitions readable → readable or unreadable → unreadable: it
is necessary to correctly predict two different snapshots of the same snippet,
and a difference even in a single feature used by the underlying model (e.g.,
line length) could possibly confuse the model. Looking at the confusion matrix,
it can be noticed that the tool often confuses readable → readable transitions
with readable → unreadable ones. For example, this happens for a change to
the class SpdySynStreamStreamSourceChannel of Undertow4: in this case, some
methods were removed and, while the remaining ones are clearly readable, the
tool wrongly classified the constructor, which has a very long line for the signature
(167 characters). Probably, the same mistake was done in the previous version,
but the other methods avoided to wrongly classify the whole class.

4Undertow, commit f8fcc: https://git.io/Jf1pt

96 Chapter 7. Readability Evolution in Open Source Projects

Summary of RQ2. There is a loss of accuracy when using readability
prediction tools for transitions instead of single versions.

7.4 Study II: Readability Evolution

The goal of our empirical study is to understand how readability evolves in
software development, i.e., how frequently code readability changes and why it
changes. The perspective is that of a researcher who wants to understand how
readability is managed in practice and that of a software quality consultant who
wants to recommend how to avoid readability deterioration.

Our empirical study is guided by the following research questions:

RQ3 How often does readability change? This research question aims at under-
standing how frequently readable code becomes unreadable and vice versa.
Considering Q3 in Section 6.2, with this research question we also want to
verify if there is a match between what people say with what people do
[82, 83].

RQ4 How and why does code readability change? With this research question
we take a closer look at the source code modifications leading to readabil-
ity changes in order to understand (i) which kind of changes make code
readability evolve and (ii) why code readability changes.

7.4.1 Experimental Procedure

To answer both our research questions, we used the dataset we collected
(described in Section 7.3.1). We report in Table 7.5 a summary of the datasets we
have used to answer each research question.

Table 7.5: Dataset used in the second study.

Research Question Dataset No. of transitions

RQ3 Our new dataset (with bootstrapping) 346,337
RQ4 Subset of our dataset 57

7.4. Study II: Readability Evolution 97

h1

f2

f1

f3

f4

f5

Extraction
of the file history

Readability
assessment

Transition
history

0.81

0.75

0.77

0.12

0.18

f2

f1

f3

f4

f5

100%

NE

20%R UR

NE R

R R

R R

R UR

URUR

g2

g1

g3

0.78

0.65

0.61

g2

g1

g3

ON R

R R

R R

100%

ON

80% 100%

Probability
inference

File f

File g

Figure 7.2: The process we used to compute the transition probability of a project.

To answer RQ3, considering the history of each file f we associated to each
revision a transition in the readability evolution model described in Section 7.2.
We perform such an analysis at commit-level, i.e., at the finest-grained level
achievable when looking at the revision history of a project. Other choices could
have been made, such as considering a more coarse-grained level (e.g., release-
level). We think that the finest-grained analysis is more useful for developers
who want to continuously check if readability is deteriorating: for example, such
a model could be used in Continuous Integration pipelines to allow developers
finding issues and fixing them as soon as possible.

File modifications do not necessarily change the readability, i.e., the model
contains self-loops from readable to readable, and from unreadable to unreadable.
Figure 7.2 summarizes the procedure we used to compute the transition probability
of a project.

We counted the frequencies of all the transitions we observed in each project
and used them to compute the probabilities of transition in code readability
evolution model. We estimated the probability P (Sj |Si) as:

P (Sj |Si) = freq(Si → Sj)∑
Sk
freq(Si → Sk)

98 Chapter 7. Readability Evolution in Open Source Projects

We report the probabilities we inferred from our data for all the projects taken
individually. We also report the percentage of files that were always readable (fi
readable ∀fi), always unreadable (fi unreadable ∀fi), and that changed readability
(∃fi readable and ∃fj unreadable). To account for the possible errors made by
the tool, we used bootstrapping [78] to compute the confidence intervals of each
probability.

Specifically, we used the m-out-of-n bootstrap [69], where n is the original
sample size and m is lower than n. We do not use the original bootstrapping,
because our samples contain many data points (346,337), and we set m = 0.8n
[69]. Therefore, we extracted 10,000 subsamples with repetition of m transitions
file from our dataset for each single project and, for each of them, we estimated
P (Sj |Si). Given the resulting distribution, we report the 90% confidence interval,
i.e., the 5% and 95% quantiles.

Furthermore, we try to understand if there is a correlation between the
percentage of files that are created unreadable and remain unreadable with the
number of commits of the projects, the number of files, and the number of
contributors at the last commit we analyzed. To do this, we report the Kendall’s
τ , along with the p-values, correct for multiple comparisons using the method of
Benjamini and Hochberg [50]. The p-values for correlations represent evidence
against the null-hypothesis that the correlation between the ranks of the variables
we study equals 0 [204]. Therefore, we use p-values only as a sanity check:
significant correlation may still be very low and practically nonexistent.

Finally, we specifically focus on files that experienced a change in terms of
code readability and we try to verify if it is possible to characterize such changes
in terms of number of files modified in the commit and number of changed lines.
As a first step, we extract the number of modified files and changed lines (added
or removed) from each commit of the revision history of each project. We did this
considering only files that had at least a readability increase or decrease in their
history (i.e., readable → unreadable or unreadable → readable). Then, we divided
the data we gathered in three groups:

• R+: transitions representing an increase of code readability (i.e., transitions
readable → unreadable);

7.4. Study II: Readability Evolution 99

• R−: transitions representing a decrease of code readability (i.e., transitions
unreadable → readable);

• R0: transitions that did not result in a readability change (i.e., transitions
readable → readable and unreadable → unreadable).

Then, we formulate three hypotheses for each property we compare (i.e.,
number of modified files, number of changed lines, number of added lines, number
of removed lines): (i) there is a difference between commits that increase readability
(R+) and commits that decrease readability (R−); (ii) there is a difference between
commits that increase readability (R+) and commits that do not change readability
(R0); (iii) there is a difference between commits that decrease readability (R−) and
commits that do not change readability (R0). We use the the Wilcoxon rank-sum
test [236] to check such hypotheses: specifically, the null hypotheses are that
there is no significant difference between such pairs of groups. We performed the
tests for each project separately and also for all the whole dataset. We do not
include in the comparison groups containing the states created and other-name
since we are interested in characterizing changes in the evolution rather than at
the introduction of a file. We reject a null hypothesis if the p-value is lower than
0.05. We adjust the p-values obtained for the group of hypotheses related to each
metric using the Benjamini and Hochberg [50] method. We also compute the
effect size to quantify the magnitude of the significant differences we find. We use
Cliff’s delta [71] since it is non-parametric. Cliff’s d lays in the interval [-1, 1]: the
effect size is negligible for |d| < 0.148, small for 0.148 ≤ |d| < 0.33, medium
for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474. If d > 0, it means that the first
group is larger than the second, while the opposite happens otherwise.

To answer RQ4, we selected the files that, during the history of the projects,
had a big variation in code readability in terms of the continuous readability score,
i.e., files with minimum readability lower than or equal to 0.25 and maximum
readability higher than or equal to 0.75. Two of the authors manually analyzed
the history of these files. For each change we annotated:

• the type of change that the developer did to the specific file among adap-
tive (new feature implementation), corrective (bug fixing), and perfective
(refactoring and code cleaning);

100 Chapter 7. Readability Evolution in Open Source Projects

Dataset by
Pantiuchina et al.

(2018)

Rbefore Rafter

0.3 0.4

0.4 0.6

0.6 0.7

0.40.7

unreadable unreadable
unreadable readable

readable readable

readable unreadable

State
Rbefore

State
Rafter

Redability
transitions

classification

0.4 0.6

0.6 0.7

0.40.7

0.7 0.7

unreadable readable

readable unreadable

readableunreadable

readable unreadable

unreadable unreadable

unreadable readable

readable readable

readable unreadable

unreadable readable

readable unreadable

readableunreadable

readable unreadable

Select
readable -> unreadable

transitions

Manual
evaluation

Error interval
estimation

[0.416, 0.600]

RQ1 Which readability values lead to classification errors?

RQ3. How often does readability change?

Our
dataset

457,651
transitions

Remove
111,314
transitions

RQ4. How and why does code readability change?

Extract files with
a big variation
of the readability
score

RQ2. Which readability values lead to errors?

Extract 271 transitions
for a significant
random stratified sample

Manual
evaluation

346,337
transitions

Our
dataset

State
Rbefore

State
Rafter

Use to filter
our dataset

Sample of
our dataset

Accuracy of the readability model

Extract 10,000
subsamples of
277,070 transitions
out of 346,447
(with repetitions)

m-out-of-n
bootstrap

Sample of
our dataset

Manual
evaluation

Transition probabilities Insights

Figure 7.3: Process of Study I and Study II.

• why readability changed (e.g., comments added or long lines removed),
focusing on three aspects: visual, structural, and textual [199].

In case of disagreement, two authors of the study performed an open discussion
to resolve conflicting cases. We used the results of the analysis to formulate
suggestions, available in Section 7.4.2, on how to avoid readability deterioration
and annotations in order to improve source code readability.

In Figure 7.3 we summarize the process used for our two studies. Our repli-
cation package [176] contains the datasets we used to answer RQ3 and RQ4 to
foster the replicability of this study.

7.4. Study II: Readability Evolution 101

7.4.2 Empirical Study Results

We report in this section the results of our Study II for each research question.

RQ3: How often Does Readability Change?

Tables 7.6 and 7.7 show the probabilities estimated for the 25 projects we
considered. We report in the table the mean probability estimation over the
10,000 bootstrap subsamples, along with the 90% confidence intervals below each
estimation, in the form [5% quantile, 95% quantile]. The vast majority of the files
are created readable. In eighteen projects out of twenty-five, the probability of
creating an unreadable file is lower than 10%. However, there are exceptions: in
Apache Incubator-Skywalking and Apache Beam, about a quarter of the files are
created unreadable, while in ParSeq this percentage is even higher (more than a
40%). We discuss some examples for such a project later.

In general, we did not observe significant differences for file renaming as com-
pared to file creation in terms of the resulting readability; for some projects such
as Apache Qpid and Apache Flink, however, the probability of transitioning from
other-name to unreadable is higher as compared to the probability of transitioning
from non-existing to unreadable. For such projects, class rename/move refactoring
operations are either more likely to be performed on unreadable files or they are
performed while also changing other aspects of the source code, which make such
files unreadable.

File modifications rarely result in a change in code readability. Usually, readable
files remain readable, while unreadable files remain unreadable. We observed that,
generally, it is more likely that unreadable files become readable than the opposite.
In some projects, such as Apache Tomcat, IGV, Xnio, and hlt-confdb, readability
improvement seems a priority: the probability that unreadable files become
readable is higher than 10%. It is worth noting that such projects also achieve
low probabilities of introducing unreadable files. Nevertheless, it is still likely
that such a phenomenon is unconscious in such projects, i.e., the developers do
not make an effort to improve readability, but it is a side effect of their regular
work, as reported in previous studies [44, 65, 224, 208, 141, 241]. We provide
more details about this aspect in our qualitative analysis.

102 Chapter 7. Readability Evolution in Open Source Projects

Table 7.6: Mean readability evolution probabilities and 90% confidence intervals
of the bootstrap subsamples (file introduction).

Project non-existing→ other-name→
readable unreadable readable unreadable

Apache Beam 78.4% 21.6% 73.7% 26.3%
[77.3%, 79.6%] [20.4%, 22.7%] [71.0%, 76.4%] [23.6%, 29.0%]

Apache Cxf 90.7% 9.3% 97.8% 4.1%
[90.1%, 91.3%] [8.6%, 10.0%] [93.0%, 100%] [2.3%, 8.1%]

Apache Deltaspike 93.4% 6.6% 100.0% 0.0%
[92.2%, 94.5%] [5.5%, 7.8%] [100.0%, 100.0%] [0.0%, 0.0%]

Apache Falcon 87.4% 12.5% 91.8% 8.2%
[85.9%, 89.0%] [11.0%, 14.1%] [86.7%, 96.3%] [3.7%, 13.3%]

Apache Flink 81.3% 18.7% 64.9% 35.1%
[80.5%, 82.1%] [17.9%, 19.5%] [58.8%, 70.8%] [29.2%, 41.2%]

Apache Hadoop 91.4% 8.6% 96.6% 3.4%
[90.8%, 92.0%] [8.0%, 9.2%] [94.4%, 98.6%] [1.4%, 5.6%]

Apache I.-Skywalker 75.8% 24.2% 75.6% 24.4%
[75.0%, 76.5%] [23.4%, 25.0%] [73.6%, 77.5%] [22.5%, 26.4%]

Apache Isis 93.0% 7.0% 90.4% 9.6%
[92.5%, 93.5%] [6.4%, 7.5%] [87.8%, 92.7%] [7.2%, 12.1%]

Apache Qpid-b. 91.1% 8.9% 100.0% 0.0%
[90.5%, 91.7%] [8.2%, 9.5%] [100.0%, 100.0%] [0.0%, 0.0%]

Apache Qpid 91.6% 8.4% 79.8% 21.0%
[90.8%, 92.4%] [7.6%, 9.2%] [61.5%, 94.7%] [6.7%, 38.5%]

Apache Tomcat 95.7% 4.3% 100.0% 0.0%
[95.0%, 96.4%] [3.6%, 4.9%] [100.0%, 100.0%] [0.0%, 0.0%]

Fullcontact4j 95.4% 4.6% 94.6% 6.8%
[93.2%, 97.4%] [2.6%, 6.8%] [87.5%, 100.0%] [2.8%, 14.3%]

Hibernate Metamodel G. 97.6% 2.4% // //
[95.8%, 99.1%] [0.9%, 4.2%]

hlt-confdb 91.4% 8.6% // //
[88.1%, 94.4%] [5.5%, 11.9%]

IGV 93.5% 6.5% 100.00% 0.0%
[92.0%, 94.9%] [5.1%, 8.0%] [100.00%, 100.00%] [0.0%, 0.0%]

JBoss Modules 91.9% 8.1% 100.00% 0.0%
[89.2%, 94.5%] [5.5%, 10.8%] [100.00%, 100.00%] [0.0%, 0.0%]

JBoss Tools JBPM 95.2% 4.8% // //
[93.5%, 96.8%] [3.1%, 6.5%]

NITHs 93.8% 6.2% 89.2% 10.8%
[92.0%, 95.5%] [4.5%, 8.0%] [82.1%, 95.4%] [4.7%, 17.8%]

Nuxeo Runtime 93.4% 0.6% 93.6% 6.4%
[92.0%, 94.7%] [0.5%, 0.8%] [89.5%, 97.2%] [2.8%, 10.5%]

OpenEngSB 89.8% 10.1% 92.1% 7.9%
[89.0%, 90.6%] [9.4%, 10.9%] [90.9%, 93.3%] [6.7%, 9.1%]

ParSeq 58.7% 41.3% 81.3% 20.5%
[55.7%, 61.7%] [38.3%, 44.3%] [61.5%, 100.0%] [7.1%, 40.0%]

RxJava 91.7% 8.3% 87.5% 12.5%
[91.0%, 92.5%] [7.5%, 9.0%] [84.5%, 90.3%] [7.1%, 15.5%]

SIB dataportal 95.7% 4.3% // //
[94.4%, 97.0%] [3.1%, 5.5%]

Undertow 78.9% 21.1% 97.8% 3.9%
[77.1%, 80.1%] [19.3%, 22.8%] [93.2%, 100.0%] [2.2%, 7.9%]

Xnio 90.4% 9.6% // //
[88.0%, 92.7%] [7.2%, 12.0%]

7.4. Study II: Readability Evolution 103

Table 7.7: Mean readability evolution probabilities and 90% confidence intervals
of the bootstrap subsamples (file evolution).

Project readable→ unreadable→
readable unreadable readable unreadable

Apache Beam 99.8% 0.2% 0.6% 99.4%
[99.8%, 99.9%] [0.1%, 0.2%] [0.4%, 0.7%] [99.3%, 99.6%]

Apache Cxf 99.8% 0.2% 1.9% 98.1%
[99.8%, 99.9%] [0.1%, 0.2%] [1.4%, 2.4%] [97.6%, 98.6%]

Apache Deltaspike 99.8% 0.2% 4.9% 95.1%
[99.6%, 99.9%] [0.1%, 0.4%] [2.1%, 7.9%] [92.1%, 97.9%]

Apache Falcon 99.6% 0.4% 0.9% 99.1%
[99.4%, 99.8%] [0.2%, 0.6%] [0.4%, 1.4%] [98.6%, 99.6%]

Apache Flink 99.6% 0.4% 2.1% 97.9%
[99.6%, 99.7%] [0.2%, 0.4%] [1.6%, 1.4%] [97.4%, 98.3%]

Apache Hadoop 99.9% 0.1% 0.9% 99.1%
[99.9%, 99.9%] [0.0%, 0.1%] [0.5%, 1.3%] [98.7%, 99.4%]

Apache I.-Skywalker 99.4% 0.6% 0.7% 99.3%
[99.2%, 99.5%] [0.4%, 0.7%] [0.4%, 0.9%] [99.1%, 99.5%]

Apache Isis 99.8% 0.1% 3.7% 96.3%
[99.8%, 99.9%] [0.0%, 0.2%] [2.6%, 4.8%] [95.2%, 97.4%]

Apache Qpid-b. 99.9% 0.1% 1.9% 98.1%
[99.8%, 99.9%] [0.0%, 0.2%] [1.4%, 2.5%] [97.5%, 98.6%]

Apache Qpid 99.9% 0.1% 2.5% 97.5%
[99.8%, 99.9%] [0.0%, 0.1%] [1.6%, 3.4%] [96.6%, 98.4%]

Apache Tomcat 99.9% 0.1% 5.6% 94.4%
[99.9%, 99.9%] [0.0%, 0.1%] [3.8%, 7.5%] [92.5%, 96.2%]

Fullcontact4j 99.5% 0.5% 0.0% 100.0%
[98.8%, 100.0%] [0.2%, 1.2%] [0.0%, 0.0%] [100.0%, 100.0%]

Hibernate Metamodel G. 100.0% 0.0% 0.0% 100.0%
[100.0%, 100.0%] [0.0%, 0.0%] [0.0%, 0.0%] [100.0%, 100.0%]

hlt-confdb 99.9% 0.1% 6.3% 93.8%
[99.8%, 100.0%] [0.0%, 0.2%] [2.3%, 11.2%] [88.8%, 97.8%]

IGV 99.7% 0.3% 5.1% 94.9%
[99.5%, 99.8%] [0.1%, 0.4%] [2.5%, 7.9%] [92.1%, 97.4%]

JBoss Modules 99.9% 0.1% 2.8% 97.8%
[99.8%, 100.0%] [0.0%, 0.2%] [1.2%, 5.7%] [94.5%, 100.0%]

JBoss Tools JBPM 97.9% 0.2% 0.0% 100.0%
[96.3%, 99.2%] [0.1%, 0.4%] [0.0%, 0.0%] [100.0%, 100.0%]

NITHs 99.9% 0.1% 3.0% 97.0%
[99.8%, 100.0%] [0.0%, 0.2%] [0.9%, 5.7%] [94.3%, 99.2%]

Nuxeo Runtime >99.9% 0.1% 2.9% 97.1%
[99.9%, 100.0%] [0.0%, 0.1%] [1.0%, 4.5%] [95.6%, 100.0%]

OpenEngSB 99.8% 0.2% 1.6% 98.4%
[99.7%, >99.8%] [0.1%, 0.3%] [1.1%, 2.1%] [97.9%, 98.9%]

ParSeq 99.1% 0.9% 0.8% 99.6%
[98.4%, 99.6%] [0.4%, 1.6%] [0.5%, 1.6%] [97.9%, 98.9%]

RxJava 100.0% <0.1% 2.4% 97.6%
[99.9%, 100.0%] [0.0%, 0.1%] [1.4%, 3.4%] [96.6%, 98.6%]

SIB 99.7% 0.05% 0.0% 100.0%
[99.2%, 100.0%] [0.03%, 1.1%] [0.0%, 0.0%] [100.0%, 100.0%]

Undertow 99.6% 0.4% 0.8% 99.1%
[99.5%, 99.8%] [0.2%, 0.5%] [0.4%, 1.2%] [98.8%, 99.5%]

Xnio 99.7% 0.3% 5.1% 94.9%
[99.5%, 99.9%] [0.1%, 0.5%] [1.9%, 8.7%] [91.3%, 98.1%]

104 Chapter 7. Readability Evolution in Open Source Projects

The probabilities of readability changes we reported regard a single commit.
It could be argued that readability changes are unlikely simply because most of
the changes are small and thus they may affect readability only in the long run.
To look more in depth into this, we also computed the percentage of files that (i)
are created readable and remain readable, (ii) are created unreadable and remain
unreadable, (iii) change readability at least once during the evolution. Table 7.8
shows the aforementioned results: only a minority (usually less than 5%) of the
files change its readability during the history of a project, while 88.9% of the files
remain readable and 9.9% of them are always unreadable, on average.

We found that the number of commits is significantly correlated with the
number of unreadable files (Kendall τ 0.31, corrected p-value 0.049): this suggests
that the longer the history of the project is, the higher the risk of introducing
unreadable code in the project. Anyway, such a correlation is low, in absolute
terms. We get a stronger correlation with the number of contributors: in this case,
the Kendall τ is 0.43 and the corrected p-value is 0.009: this suggests that the
larger the development team, the higher the number of unreadable files. Finally,
we found a weak and non-significant correlation with the number of files (τ = 0.21,
corrected p-value = 0.16): this suggests that the size of the project is not one of
the most important factors that affects the percentage of unreadable files in a
project. It is worth remarking that, since correlations do not imply causation, the
real existence of the relationships we found using such a simple analysis should
be properly verified with more in-depth analyses in future work.

Table 7.9 shows the results of our analysis regarding the characteristics of
readability evolution transitions for all the data-points, while we report in Tables
7.10 and 7.11 the results at project-level. In Figure 7.4 we report the boxplots
of files changed, lines changed, lines added and lines removed for each group,
adjusted for skewed distributions [113].

It is possible to notice that there is a low number of significant differences
in terms of number of changed files among the groups when taking into account
single projects; on the other hand, there are significant differences when taking
into account all the data-points. Such differences, however, are only negligible in
terms of effect size. This shows that the number of files modified in a commit
are not related to the presence of changes in code readability. Instead, it can

7.4. Study II: Readability Evolution 105

Table 7.8: Files always readable, always unreadable or both readable and unread-
able in the revision history of the projects.

Project Readable Unreadable Both

Apache Beam 79.0% 19.5% 1.5%
Apache Cxf 90.3% 8.6% 1.0%
Apache Deltaspike 93.2% 5.8% 0.9%
Apache Falcon 86.6% 12.3% 1.2%
Apache Flink 80.8% 17.7% 1.5%
Apache Hadoop 91.3% 8.2% 0.6%
Apache Incubator-S. 77.2% 21.4% 1.4%
Apache Isis 92.6% 6.7% 0.7%
Apache Qpid-broker-j 90.3% 8.8% 0.9%
Apache Qpid 91.4% 7.8% 0.8%
Apache Tomcat 95.1% 3.5% 1.4%
Fullcontact4j 93.0% 5.7% 1.3%
Hibernate Metamodel Gen. 97.6% 2.4% 0.0%
hlt-confdb 90.5% 6.4% 3.0%
IGV 92.1% 5.5% 2.4%
JBoss Modules 91.7% 6.8% 1.1%
JBoss Tools JBPM 94.2% 4.6% 1.2%
NITHs 93.0% 5.6% 1.4%
Nuxeo Runtime 94.4% 5.1% 0.5%
OpenEngSB 89.2% 9.4% 1.4%
ParSeq 64.7% 33.9% 1.4%
RxJava 92.3% 7.1% 0.6%
SIB-dataportal 95.9% 4.0% 0.1%
Undertow 77.1% 20.7% 2.2%
Xnio 89.2% 9.1% 1.7%

106 Chapter 7. Readability Evolution in Open Source Projects

Table 7.9: Comparison of characteristics of the commits (number of files and lines
changed) among different transaction types.

Files changed Lines changed
Comparison p-value Cliff’s d Comparison p-value Cliff’s d

R+ R− 0.308 // R+ R− 0.153 //
R+ R0 0.060 // R+ R0 < 0.001 0.513 (large)
R− R0 < 0.001 -0.099 (negligible) R− R0 < 0.001 0.527 (large)

Lines added Lines removed
Comparison p-value Cliff’s d Comparison p-value Cliff’s d

R+ R− 0.017 -0.095 (negligible) R+ R− 0.843 //
R+ R0 < 0.001 0.385 (medium) R+ R0 < 0.001 0.375 (medium)
R− R0 < 0.001 0.478 (large) R− R0 < 0.001 0.319 (small)

R+ R− R0

0
10

0
20

0
30

0
40

0
50

0
60

0

Files changed

R+ R− R0

0
10

0
20

0
30

0
40

0
50

0
60

0

Lines changed

R+ R− R0

0
10

0
20

0
30

0
40

0

Lines added

R+ R− R0

0
50

10
0

15
0

20
0

25
0

Lines removed

Figure 7.4: Adjusted boxplots of files changed, lines changed, lines added and
lines removed for each group (without outliers).

7.4. Study II: Readability Evolution 107

be noticed that, in general, there is no significant difference when comparing R+

and R− in terms of modified lines, except for the comparison on the lines added
(p-value ' 0.017), which is negligible anyway. The difference is always significant
(p-value < 0.001) when comparing (i) R+ and R0, and (ii) R− and R0, even if
with different values of Cliff’s d.

Table 7.10 reports the effect size for the significant differences (by project)
among the three compared groups in terms of total number of files changed and
total number of lines changed; in Table 7.11 we report the same kind of comparison
in terms of lines added and removed. In both the tables, we do not report values
(cells marked as “//”) for which the difference is not significant (p-value > 0.05).
We could not compute the results for the project Hibernate Metamodel Generator
because it only has transitions that do not change readability (i.e., readable →
readable or unreadable → unreadable).

In general, we observed that changes that either improve or reduce code
readability are different than changes that do not change readability in terms of
number of modified lines (both added and removed). Specifically, it is more likely
that code readability changes when many lines are added to or removed from
the source file. Smaller changes, instead, are less likely to result in a readability
modification.

The Case of ParSeq. We analyzed more in depth the project with a larger
quantity of unreadable files to understand what caused this, i.e., LinkedIn ParSeq.
ParSeq is a framework that allows to simplify the writing of asynchronous code.

It is worth mentioning that, also given its nature, such a project makes heavy
usage of the functional programming features introduced in Java 8 (e.g., lambda
expressions): if not used sparingly, such features may make the code difficult to
read. This is the case of the class Par2Task5: the nested lambda expressions and
the bad naming of the identifiers (e.g., p or o) make such a class very hard to read.
Then, we found that developers commonly used unpopular coding conventions:
for example, a leading underscore is used for private fields (e.g., “_rand”), which
is more common in other programming languages, such as Python.

5Linkedin ParSeq, commit f3d9c: https://git.io/JfiqM

108 Chapter 7. Readability Evolution in Open Source Projects

Table 7.10: Comparison on the subset with Wilcoxon rank-sum for various groups.

Project Files changed Lines changed
R+ vs. R− R+ vs. R0 R− vs. R0 R+ vs. R− R+ vs. R0 R− vs. R0

Ap. Beam // // -0.425 (M) -0.352 (M) 0.386 (M) 0.553 (L)
Ap. Cxf // // // // 0.523 (L) 0.677 (L)
Ap. Deltaspike // // // // 0.857 (L) 0.683 (L)
Ap. Falcon // // // // 0.493 (L) //
Ap. Flink 0.257 (S) // -0.206 (S) // 0.440 (M) 0.462 (M)
Ap. Hadoop // -0.367 (M) -0.283 (S) // 0.479 (L) 0.590 (L)
Ap. Inc.-S. // -0.277 (S) // // 0.471 (M) 0.470 (M)
Ap. Isis // // // // 0.676 (L) 0.399 (M)
Ap. Qpid-b. // // // // 0.600 (L) 0.608 (L)
Ap. Qpid // // // // // 0.500 (L)
Ap. Tomcat // // // // 0.566 (L) 0.613 (L)
Fullcontact4j // 0.861 (L) // // // //
Hib. Meta. Gen. // // // // // //
hlt-confdb // // // // // 0.702 (L)
IGV // // // // 0.542 (L) 0.719 (L)
JBoss Modules // // // // // //
JBoss JBPM // // // // 0.873 (L) //
NITHs // // // // // //
Nuxeo Runtime // // // // // //
OpenEngSB -0.371 (M) -0.477 (M) -0.255 (S) // 0.538 (L) 0.294 (S)
ParSeq // // // // 0.556 (L) //
RxJava // // // // 0.518 (L) 0.527 (L)
SIB-dataportal // // // // // //
Undertow // // // // 0.636 (L) 0.710 (L)
Xnio // 0.733 (L) // // 0.876 (L) 0.592 (L)

7.4. Study II: Readability Evolution 109

Table 7.11: Comparison on the subset with Wilcoxon rank-sum for various groups.

Project Lines added Lines removed
R+ vs. R− R+ vs. R0 R− vs. R0 R+ vs. R− R+ vs. R0 R− vs. R0

Ap. Beam -0.547 (L) 0.237 (S) 0.596 (L) // 0.515 (L) 0.313 (S)
Ap. Cxf // 0.487 (L) 0.532 (L) -0.326 (S) // 0.408 (M)
Ap. Deltaspike // 0.759 (L) 0.660 (L) // 0.823 (L) //
Ap. Falcon // // // // // //
Ap. Flink // 0.323 (S) 0.432 (M) // 0.435 (M) 0.265 (S)
Ap. Hadoop // 0.494 (L) 0.544 (L) // // //
Ap. Inc.-S. // 0.469 (M) 0.355 (M) // 0.280 (S) 0.425 (M)
Ap. Isis // 0.386 (M) 0.348 (M) 0.436 (M) 0.645 (L) 0.302 (S)
Ap. Qpid-b. -0.306 (S) 0.254 (S) 0.576 (L) // 0.541 (L) 0.356 (M)
Ap. Qpid // // 0.520 (L) // // //
Ap. Tomcat -0.411 (M) // 0.551 (L) // 0.553 (L) 0.347 (M)
Fullcontact4j // // // // // //
Hib. Meta. Gen. // // // // // //
hlt-confdb // // // // // 0.726 (L)
IGV // // 0.709 (L) // 0.629 (L) //
JBoss Modules // // 1.000 (L) // // //
JBoss JBPM // 0.738 (L) // // 0.651 (L) //
NITHs // // // // // //
Nuxeo Runtime // // // // // //
OpenEngSB // 0.497 (L) 0.322 (S) // // //
ParSeq // // // // // //
RxJava // // 0.501 (L) // // //
SIB-dataportal // // // // // //
Undertow // 0.421 (M) 0.528 (L) // 0.504 (L) 0.309 (S)
Xnio // 0.896 (L) // // // //

110 Chapter 7. Readability Evolution in Open Source Projects

It can be noticed that such an uncommon convention (leading underscore)
is used also for method names, as it is possible to observe in the previously
mentioned class Par2Task. Specifically, let us consider this line:

return map(tuple -> f.apply(tuple._1(), tuple._2()));

In this case, there is a call to two public methods that contain a leading
underscore. It is worth noting that the presence of such methods does not only
negatively affect the readability of the class that contains them, but also the
readability of the classes that use them, such as the one previously mentioned.

Looking at the evolution of files in ParSeq, we noticed that, in general,
developers first try to quickly implement features and then they optionally refine
the classes and improve their quality, including readability. For example, our
dataset contains 25 readability transitions for the class BatchingStrategy: such a
class was created unreadable and it remained unreadable for 14 transitions; then,
a commit adds a transition unreadable → readable and, finally, this file remains
readable for other 9 transitions. In the second commit6, the file completely
misses Javadoc comments. Later, in commit fc27e7 developers added Javadoc
comments to the class and, finally, in commit 8d7a38, the file became readable
(i.e., unreadable → readable), thanks to other small improvements to the code
structure. However, such an approach, as evidence shows, does not always work,
because only a small percentage of unreadable file of such a project become
readable (i.e., 0.8%). All the others remain unreadable.

For example, this is the case of class ClassifierDriver. This file is involved
in 3 transitions. One of the commits that modify such a file is a97589: even if
such a change is specifically aimed at improving the readability by unifying code
formatting, this is not enough to make the file readable.

Summary of RQ3. Code readability of an individual file rarely changes
during the evolution of a project.

6Linkedin ParSeq, commit ce2ae: https://git.io/Jf6jp
7Linkedin ParSeq, commit fc27e: https://git.io/Jfim5
8Linkedin ParSeq, commit 8d7a3: https://git.io/JfwPs
9Linkedin ParSeq, commit a9758: https://git.io/JfwXR

7.4. Study II: Readability Evolution 111

RQ4: How and Why Does Code Readability Change?

We found that 57 files had extreme readability scores in their history (i.e.,
both < 0.25 and > 0.75). For such files, in total, we considered 82 commits and
commit sequences that changed code readability. We found 16 commits and 1
commit sequence for which we did not agree with the output of the tool (i.e., the
tool misclassified code readability). We excluded such cases and, therefore, we
considered 65 commits and commit sequences.

We found that most of the readability changes (82.0% of the cases) were
caused by adaptive changes, 14.7% of them were caused by perfective changes,
while only 3.3% of them happened because of corrective changes. As it could be
expected, all the perfective changes improved code readability: it is interesting,
however, that even perfective changes not explicitly aimed at improving code
readability may have that as a side-effect. We also found that both of the two
corrective changes we analyzed improved code readability: it is well known that,
sometimes, developers refactor code before fixing bugs; it is less expected, instead,
that corrective changes usually improve code readability. While such findings may
seem expected, to the best of our knowledge this is the first piece of empirical
work that relates the type of changes to code readability. This kind of evidence is
important since, as previous work shows [170], developers’ perception may not
be always well captured by code metrics: it could happen that developers think
they are improving some aspects of source code, while this is not case, or, on the
other hand, it could happen that code metrics are not sufficiently sophisticated
to capture the improvement. We report below some interesting cases we found.

Refactoring improved readability. Six perfective changes out of nine are
from Apache Incubator-Skywalking. The developers decided to refactor a part
of the system involving module installers. This operation was aimed at reducing
the complexity of single installers, moving it to super classes. The result of this
refactoring, indeed, resulted in a profound improvement in code readability for
some of the installers which contained more articulated code. It is worth noting
that such changes were not explicitly intended to improve the readability: this
was a side effect of refactoring.

Bug fixing improved readability. A clear example of corrective change
that results in higher readability comes from Apache Deltaspike. The developers

112 Chapter 7. Readability Evolution in Open Source Projects

fixed parts of the project and, in doing so, also added a comment in a small
class. This comment was aimed at clarifying the purpose of a line. This addition
increased both the number of comments and the consistency between comments
and identifiers. This modification also increased the readability of the whole class.

Adaptive changes. In Apache Incubator-Skywalking, we found 16 cases in
which code became unreadable. Looking at the code, we found that developers
first implemented empty versions of some methods (e.g., containing just return
0;). Such versions were clearly readable. After this first phase, they actually
implemented such methods and, in doing so, they incidentally introduced un-
readable code. Therefore, even if in this case we face a change in readability,
this happens just because the developers created the classes in two steps. We
found similar examples also in other projects, such as Apache Falcon. In other
cases, we found that code readability decreased because simple methods were
removed. In fact, we compute the readability of a class as the mean readability of
the methods that compose it: if a class contains both readable and unreadable
methods, the code readability decreases when the number of readable methods
decreases. This happened, for example, in a commit10 from Apache Tomcat in
which 13 very simple methods were removed from the class StackMapTableEntry,
in a commit11 from Apache Beam in which five empty methods were deleted
from the class FlinkStateInternalsTest and in a commit12 Apache Qpid-broker-
j in which two empty methods with documentation were removed from class
Refresh. Similarly, most of the adaptive changes that resulted in a code readabil-
ity improvement were incidental. In six cases, unreadable code was removed or
commented. This happened, for example, in the test HandlerComparatorTest in
Apache Deltaspike13.

The results of our qualitative analysis agree with what was already observed
for other bad pracites (e.g., code smells) [44, 65, 224, 208, 141, 241]: changes in
readability are mostly done unintentionally.

10Apache Tomcat, commit 7d99e: https://git.io/fjLRw
11Apache Beam, commit 7126f: https://git.io/fjLR9
12Apache Qpid-broker-j, commit 2d90e: https://git.io/fjLRl
13Apache Deltaspike, commit 36861: https://git.io/fhHpp

7.4. Study II: Readability Evolution 113

Why does Code Readability Change? We looked more in depth into the
causes of the changes in code readability. We did this in terms of structural, visual,
and textual aspects, i.e., the ones used in the state of the art to predict code
readability.

We found 34 cases in which code readability decreases because of structural
aspects. The most common cause is the introduction of long lines of code (17
cases): for example, in a commit14 from Apache Incubator Skywalking, it is
possible to find, among the other possible problems, that the longest line of code
has 116 characters; the Java guidelines15 suggest to make lines shorter than 100
or even 80 characters.

We also found 19 cases in which the problem was the introduction of high
levels of nesting (e.g., if-else statements or loops). For example, in a commit16

from Apache Incubator Skywalking, it is possible to find in the class SegmentH2DAO
the introduction of a try block in two nested if statements, nested in another
try block. Other common problems include higher number of parentheses and
complex arithmetic expressions (e.g., higher number of operators). In 27 cases,
code readability increased because of improvements of some structural aspects.
Conversely to what happened for readability decrease, in these cases nested blocks
mostly disappeared: in a commit17 from Apache Falcon, the class LateDataUtils
was refactored by extracting a long and complex instruction and putting it in a
method on its own. This helped increasing the whole readability of the class.

We found 26 cases in which readability decreased because of changes in visual
aspects. In 25 cases it is possible to see that indentation was not properly used.
This happened, for example, in a commit18 from Apache Incubator Skywalking:
the class ApplicationH2DAO does not have proper indentation; besides, a line
starts with a “;” which was, most likely, not intended to be there. Conversely, we
found 8 cases in which readability improved as a consequence of changes in visual

14Apache Incubator Skywalking, commit ca90b: https://git.io/JeB5z
15The ones by Oracle, http://www.oracle.com/technetwork/java/codeconventions-150003.pdf,

and the ones by Google, https://google.github.io/styleguide/javaguide.html
16Apache Incubator Skywalking, commit d4333: https://git.io/JeB9a
17Apache Falcon, commit 3769e: https://git.io/JeBbW
18Apache Incubator Skywalking, commit bc38a: https://git.io/JeB50

114 Chapter 7. Readability Evolution in Open Source Projects

aspects. For example, in a commit19 from Reactive RxJava, in which in the class
OperatorMulticast is added code with a good indentation.

We found six cases in which readability decreased because of textual aspects,
most of which regarding problems in the names of the identifiers (e.g., wrong
word splitting or abbreviations). For example, this occurred in a commit20 from
Apache Tomcat: simple methods were removed and a remaining method, i.e.,
toString, was unreadable also because of the presence of many occurrences of
the identifier buf, short for “string buffer”. In 15 cases readability increased
because of improvements in textual aspects instead. This happened because the
developers added comments, improved bad identifiers or the textual cohesion. For
example, this is the case of a commit21 from Apache Hadoop in which the method
testDynamicLogLevel, that implemented many concepts (possibly, an eager test),
was divided in many methods (e.g., testLogLevelByHttp) with a higher textual
cohesion.

Summary of RQ4. We observed that (i) big code changes in which
new code is added are the most prone to reduce code readability, and (ii)
readability is increased/decreased mostly unintentionally.

Discussion

The main finding of our study is that code readability rarely changes. A
first hint towards this finding could be found in the survey presented in Chapter
6, in which most of the developers declared that, according to their experience,
readability changes only in less than 25% of the cases. Our empirical results
confirm this, showing that such a percentage is, actually, very low (always lower
than 6.3%, for the projects we studied). Moreover, our results show that it is more
likely that developers make unreadable files readable than the opposite. Another
interesting phenomenon we observed is that, even if it is generally a minority,
unreadable code tends to stay that way: on average, about 10% of the files of a
project are created unreadable and remain unreadable, with some outliers, such
as ParSeq, for which the percentage of unreadable files is very high (33.9%).

19Reactive RxJava, commit 0499c: https://git.io/JeREW
20Apache Tomcat, commit 7d99e: https://git.io/fjLR2
21Apache Hadoop, commit 34cc2: https://git.io/JeRZK

7.4. Study II: Readability Evolution 115

The risk of introducing unreadable code is higher when developers introduce
new code in a project: when developers create new files, there is a relatively high
probability that such files are unreadable. On the other hand, readable files rarely
become unreadable (the estimated probability is always lower than 4%). In our
qualitative analysis, we found that, when this happens, it is because of adaptive
changes. Something similar was already observed in the case of introduction of
code smells [224] and dependencies on unstable APIs [60]: both code smells and
dependencies on unstable APIs are mostly present from the beginning and are
rarely introduced during code evolution.

Based on our empirical results, we define several guidelines to help developers
keeping the quantity of unreadable code low. It is worth noting that some of them
agree with what is already known to be beneficial to avoid the introduction of
problems (e.g., bugs): we still think it is interesting to know that such guidelines
also help avoiding the introduction of unreadable code.

• Do not write code that should be improved in the future. One
of the clearest evidence we obtained from the results of our study is that
readability hardly changes during software evolution. This means that
developers should not underestimate readability when writing code since it
is unlikely that unreadable code later becomes readable. This can happen
either because developers do not think it is worth spending time making
code more readable (they may have more important tasks to complete) or
because the readability may become so low that it is very hard to recover
such situations (like in the previously analyzed ParSeq). Writing code that
should be improved in the future can be seen as introducing technical debt
that should be resolved later as of Cunningham [75]: at the very least such
technical debt should be either explicitly admitted by developers [182], or
flagged by specialized tools [240].

• Reviews for code readability should be focused on new files and
big changes. Unreadable code is introduced mostly when new files/classes
are created; when a class is unreadable, it will most likely remain that way
during the entire project evolution. It would be a good practice to conduct
code reviews specifically aimed at checking the readability of the new classes

116 Chapter 7. Readability Evolution in Open Source Projects

suspected of being unreadable. Our analyses also show that code changes
bigger than usual may result in a change in code readability: therefore, big
changes should also receive special attention. Code readability estimation
tools could be used to reduce the number of classes to review (e.g., limiting
the review to potentially unreadable classes). It is worth noting that such a
guideline does not replace other general guidelines on code review aimed
at checking the presence of bugs, for which even small changes may be
detrimental.

• Prefer small incremental changes. It is well known that commits should
be small and consistent. We found that big (non-perfective) code changes
are dangerous for code readability as well as new file creation operations.
As described by Graves et al. [102], the introduction of new files could
also more likely include bugs. Even if the probability of making a readable
file unreadable is low, it is still worth reviewing such modifications since
unreadable files would most likely remain unreadable. This guideline agrees
with previous findings: for example, Purushothaman et al. [184] showed
that most of the small code changes do not result in the introduction of
defects in the software. When big code changes are necessary, performing
code reviews aimed at checking the code readability could help reducing the
risk of readability deterioration. Furthermore, Fowler et al. [98] and Duvall
et al. [81] support commit with small changes in the CI guidelines. Zhao et
al. [244] have found that this guideline is followed only to some extent, with
large differences between projects in term of adherence to this guideline.
In a recent study by Ebert et al. [83] on the confusion in code reviews,
long and complex changes have been repeatedly reported as a reason for
confusion.

• Refactor code when possible. Refactoring operations are done to im-
prove code maintainability. Our results show that it is beneficial also for
code readability. Surprisingly, we observed improvements in code read-
ability even when refactoring was not directly done with this aim. The
following guideline reminds the opposition between floss-refactoring and
root canal refactoring [157]. Developers already prefer the floss-refactoring

7.4. Study II: Readability Evolution 117

(i.e., frequent refactoring steps interleaved with their regular activities).
Consequently, in projects with a big number of unreadable files there may
be a need of perform more refactoring operations. It is worth noting that
this guideline is not in contrast with the first one: readability should not
be underestimated during development, but perfective changes are still
beneficial, above all if the readability of some classes is borderline.

• Carefully control the interface of the most used classes. The design
of the classes most used in a project may have a strong impact on the
readability of other classes. For example, if a popular class contains a
method with a unconventional name (like the previously mentioned _1 in
ParSeq), the readability of classes using such a method may be negatively
impacted. For this reason, the public methods exposed by classes, especially
the most used ones, should be carefully decided and kept up-to-date (e.g.,
if the purpose of the method is slightly changed) during the evolution of a
project.

We also delineate possible future research directions in the field of code readability
prediction:

• Define a readability-transition prediction model. Our results show
that readability prediction models aimed at predicting readability of sin-
gle versions achieve modest accuracy on predicting readability evolution
transitions: the state-of-the-art readability prediction tool that achieves
the highest accuracy on single file versions allows to achieve only a 64.5%
precision on readable → unreadable transitions. This is because the prob-
lem at hand is different and some features (e.g., number of changed lines
or author’s characteristics) are obviously ignored by such models. A new
readability-transition prediction model would be useful for developers, since
changes that make readable code unreadable are generally rare and hard
to catch manually; also, when a transition of this type happens, it is very
unlikely that an opposite transition is introduced since, in general, files with
low readability rarely become readable.

• Improving the readability-transition model. Our readability-transition
model is based on a binary classification of code readability. However, code

118 Chapter 7. Readability Evolution in Open Source Projects

readability models do not only provide the binary classification, but also
the probability that such a classification is correct (i.e., the output score
is in the range [0, 1]). Future research could be aimed at finding the best
way of including such an information in the model to improve the accuracy
through which it describes the evolution of code readability. Besides, the use
of non-time-homogeneous Markov chains could be investigated to take into
account how the evolution of a project changes the transition probabilities
in the model.

• Experiment the use of readability tools in CI. A tool that auto-
matically detects transitions that make code unreadable may be useful in
practice, and it could be integrated in Continuous Integration pipelines to
automatically warn developers when they make readability reducing changes
in commits, before other developers are involved in the code review process.
However, before this can happen, it would be necessary to understand to
what extent developers would benefit from such tools: would such tools
help them keeping the code readable? Would they find warning useful
or bothering? Empirical evidence is needed to find the answer to such
questions.

7.5 Threats to Validity

In this section we analyze and discuss the threats that could affect the validity
of the results achieved. We describe construct validity, internal validity and
external validity.

Construct Validity. The dataset is constructed by mining software repos-
itories using Git from GitHub. GitHub is widely used in software engineering
research. However, there are many possible perils in automatically extracting
information from such sources [53, 115]. We made sure that we excluded per-
sonal/toy projects and repositories not used for software development (see the
work of Munaiah et al. [154] for a more advanced treatment of this subject). We
did not explicitly check if the repositories we used were actively developed: we
singularly analyzed each project. Therefore we believe that the lack of recent
activity for some of them does not affect the validity of our results. We avoided

7.5. Threats to Validity 119

possible problems related to GitHub APIs (e.g., the fact that some APIs do not
expose all the data) by cloning and locally analyzing the Git repositories.

The model we used to compute the readability of the files in our dataset can
wrongly classify a readable file as unreadable and vice versa. We limited this
threat by using the model that in literature is reported as the one with the highest
accuracy [199]. Furthermore, Git allows developers to rewrite the history: there
is a risk that this could have affected our analysis. Another possible threat is
represented by renaming/moving operations: Git sometimes does not correctly
detect such operations and it interprets them as combinations of file removal and
addition instead, in such cases we may have wrongly used the non-existing instead
of other-name as initial state.

We operationalized the readability at class-level as the arithmetic mean of the
readability computed at method-level. It may be argued that other aggregation
techniques would have provided more reliable estimation of class-level readabil-
ity [228]: arithmetic mean does not work well when a class is composed by many
readable methods (e.g., getters and setters) and a single unreadable method [228].
We list below other measures of central tendency and discuss their advantages
and disadvantages.

• Minimum: this would have been useful in the scenario described before
(many small readable methods and a single unreadable method). How-
ever, the probability of making a mistake would have been much higher
in the average case: the probability of correctly classifying C as readable
or unreadable would have been equal to Pcorrect(C) = Πn

i=1Pcorrect(Ci).
Assuming that the probability of correctly classifying a method is constant
(i.e., ∼84%, according to the study of [199]), this value can be approximated
to 0.84n. In other words, in large classes, using the minimum could have
negatively affected the overall accuracy of the classifier, since it would have
been sufficient to wrongly classify a single method as unreadable to make a
mistake for the whole class. For example, for a class with 10 methods the
probability of correctly classifying C would have dropped to about 17.5%.

• Median: this aggregation is preferred over mean for skewed distributions,
since it is more robust and it allows to ignore extreme values (possible

120 Chapter 7. Readability Evolution in Open Source Projects

outliers). In this context, however, this was not the best choice since
extreme values are the most relevant ones, i.e., the ones on which the
classifier is more confident. Moreover, this kind of aggregation would have
not solved the problem of the arithmetic mean (many readable methods
and a single unreadable method).

• Weighted mean: while this aggregation could have been suitable for
handling cases in which there are many getters and setters and a single
unreadable long method, it is worth noting that unreadable methods are
not necessarily longer than readable ones. Instead, there could be very
short methods that make the class unreadable. Such methods would have
had a possibly smaller weight. Moreover, such an aggregation would have
forced us to assume that long methods matter to developers more than short
methods: we decided not make such a strong assumption and, therefore,
not to use this aggregation.

Finally, to define our readability evolution model, we assumed that readability
is not a cause for deletion of source files and, therefore, we did not track such
operations. This assumption does not affect the results of our study; however,
future work specifically aimed at finding the causes of class deletions may be done
to investigate more in-depth if low readability has a role in this.

Internal Validity. Because of the errors made by the readability classifier we
used, it is possible that the frequency of some transitions is larger/smaller than
it is in the reality. To limit the impact of the threat that small changes around
0.5 result in a new transition in our dataset, we excluded the borderline values
(between ∼0.416 and ∼0.600, based on the results of RQ1). However, this caused
the exclusion of about 20% of the transitions we recorded: there is a risk that
some of such transitions were not false positives and, therefore, that we missed
meaningful transitions in our subsequent analyses.

To answer RQ2, the raters needed to state their agreement with the evaluations
automatically performed by the tool. The raters might have inclined to agree
with the tool. To reduce the impact of such a threat, we made sure that at least
two authors independently rated each occurrence. Besides, in the results of RQ2,
we showed also that the tool is not as accurate in classifying transitions as when

7.5. Threats to Validity 121

it is used on single file versions. We limited this threat using bootstrapping for
estimating the probabilities and we reported the 90% confidence intervals for each
probability.

The model we defined describes the probability that a file modification results
in a change of code readability. Since we perform our analysis at commit-level,
there is the risk that small commits may gradually erode code readability until
the state of a file changes with a single commit. In other words, the probabilities
we report could be biased by the fact that most of the changes are small. Other
granularity levels (e.g., release-level) would have avoided this threat, but they
would have not allowed us to understand what happens more in details. To limit
this threat, we also report the number of files that change readability at least
once (i.e., regardless of the number of commits).

We used a time-homogeneous Markov chain to describe the readability evolu-
tion process. In other words, we assumed that the probabilities of state transitions
do not change in time. Such assumption could not always hold: for example,
the probability of introducing unreadable files may be higher when many new
developers start contributing to the project (as we observed in the results of RQ3).
Future studies should consider also the usage of generic discrete-time Markov
chains.

External Validity. The conclusions of our study may be limited to the 25
projects we considered in our experiment. We randomly selected such systems
considering only the ones with a reasonably big history and big enough that
readability monitoring may matter for their developers. Besides, we considered
only open source Java projects: the results may not be necessarily generalize to
industrial software or software written in other programming languages.

Furthermore, in the selection of open source Java projects, we selected well-
known projects that are still actively developed and this could be have biased our
results (survivor bias). Abandoned or failed projects could have had very different
characteristics: for example, it would have been possible to observe a decline in
terms of code readability at the end of the history of a project.

Another threat to validity regard results of the study. Despite the results
achieved (the transition non-existing → readable has 88.2% of precision and 68.2%
of recall, while the transition unreadable → readable has 90.5% of recall and the

122 Chapter 7. Readability Evolution in Open Source Projects

57.6% of precision) are almost in line with results obtained in other contexts
(i.e., in the recovery of traceability links or the defect prediction), we cannot say
that these values of precision and recall are sufficient for a reliable analysis of
readability evolution. To understand if these values are sufficient, there is the need
of studies designed ad-hoc to evaluate the effectiveness of the proposed approach.

7.6 Final Remarks

Readability is one of the most desirable characteristics of source code: if code
is hard to read, it is likely that it will cost a developer more effort to understand
it during maintenance.

In this chapter, we introduced a descriptive model for the evolution of code
readability at file level. The goal of our large empirical study is to understand
how and why code readability changes during software evolution. We considered
the history of 25 projects, for a total of ∼83K commits.

The results of our study show that:

• using readability prediction tools for transitions reduces their accuracy since
such tool are designed to work on single snapshots;

• only in a minorty of the cases (< 5%) the code readability of individual files
changes during the evolution of a project: when a file is created unreadable
it most likely remains unreadable;

• adaptive changes and, specifically, big commits in which new code is intro-
duced are the most prone to reduce code readability;

• code readability increases and decreases mostly unintentionally.

The empirical results obtained allow us to distill several lessons learned for
developers:

• readability-oriented code reviews should be mostly focus on new classes;

• small incremental commits should be preferred to reduce the risk of read-
ability reduction;

7.6. Final Remarks 123

• refactoring should be encouraged, when possible, since it has a positive
effect on readability.

Part III

Code Readability &
Cognitive Human Factors

125

“Experience without theory is blind,
but theory without experience is mere intellectual play.”

Kant, Immanuel

CHAPTER 8

Can Cognitive Human Factors Affect Code Quality?

Contents
8.1 Introduction . 129

8.2 Cognitive Factors and Software Development Tasks 132

8.2.1 Attention . 132

8.2.2 Memory . 133

8.3 Design of the Study 134

8.3.1 Context Selection . 135

8.3.2 Data Collection . 137

8.3.3 Data Analysis . 143

8.3.4 Replication Package 145

8.4 Results . 147

8.4.1 RQ1: Impact of Attention and Memory on Correctness149

8.4.2 RQ2: Impact of Attention and Memory on Time . . . 151

8.4.3 RQ3: Impact of Attention and Memory on Code Read-
ability . 153

128

8.1. Introduction 129

8.4.4 Discussion . 154

8.5 Threats to Validity 155

8.6 Final Remarks . 158

8.1 Introduction

In Part II we obtain important findings. Specifically, from Chapter 5, we can
derive that developers perform refactoring operations to improve code readability.
With the study in Chapter 6 we confirm these results because developers declare
that code readability is very important in their writing code activities. From
their declarations, in Chapter 7, we deepen dynamics related to the evolution of
the code readability in open source projects. From this study, we obtain that
the readability of a code changes rarely. Indeed, a code is created readable and
remains readable because it undergoes small variations on code readability, which
do not allow the file to change its readability status to unreadable. This happens
also when a file is created unreadable.

At light of these results, we can conclude that the evolution does not dete-
riorate code readability. If the evolution does not deteriorate code readability,
we conjecture that specific personal characteristics of developers can influence
the quality of a software component, i.e., code readability. Software development
and evolution are complex activities involving writing and modification of the
source code. Developers are continuously presented with coding tasks in their
daily activities, such as implementing a new feature or fixing bugs. Being able
to estimate the time required to complete a coding task and predict its internal
and external quality (e.g., correctness of coding tasks) would allow to better
allocate the effort of a development team to optimize the final outcome in terms
of time and quality. As for the correctness of source code, defect prediction is an
active field of software engineering research aiming at identifying characteristics
of the software systems and projects (e.g., code quality) [245, 109, 185, 135, 219].
In the last decade, researchers have started including in such models factors
related to the developers, their attention focus [180] or the scattering of changes
they performed [77]. The majority of existing defect prediction models, however,

130 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

completely neglect the role that cognitive human aspects can have on the final
outcome of a coding task.

In this regard, the literature in psychology reports that cognitive human
aspects correlate with different outcomes in human activities, even complex ones.
More specifically, attention- and memory-related factors are shown to be related to
activities that require problem-solving. For example, several studies [233, 178, 85]
used attention-related factors to predict the outcome in driving, while others
have shown that both attention and memory correlate with the performance in
mathematics [159, 234, 172].

In this chapter, we theorize that cognitive human aspects, and, specifically,
attention- and memory-related ones, play a role in explaining the outcome of coding
tasks in terms of time required to complete a task, and quality of the final solution,
here measured in terms of correctness (external quality) and code readability
(internal quality). As for attention, we focus on three factors: alerting (i.e., the
ability of gaining and maintaining an alert state), orienting (i.e., the ability of
selecting information from sensory input), and executive control (i.e., the ability
of dealing with conflict among responses); as for memory, we consider immediate
recall (i.e., the ability of recalling information acquired in the very short term),
and working memory (used for elaborating problem-solving strategies [40, 205]).
We decided to focus on these cognitive human aspects because Peitek et al. [173],
Siegmund et al. [207] and Krueger et al. [126] demonstrated that during coding
activities (i.e., program comprehension and code writing) there are specific neural
activations related to attention and working memory. To do this, authors use the
functional magnetic resonance imaging (fMRI) brain scan to measure the neural
activities during the coding activities.

If we prove our theory, we envision two future directions. First, researchers
would be able to define personalized defect prediction models. Second, specific
cognitive training sessions [161] for developers could be devised, aimed at improving
the most important attention- and memory-related factors. In this way, developers
can obtain a specific preparation on these factors to implement at best their
programming tasks. For example, this would allow them to write better code in
less time. To test our theory, we conducted a controlled experiment for answering
to the following research questions:

8.1. Introduction 131

• RQ1: To what extent do attention and memory have an impact on the
correctness of the solution of coding tasks?

• RQ2: To what extent do attention and memory have an impact on the time
needed to complete coding tasks?

• RQ3: To what extent do attention and memory have an impact on readability
of the solution of coding tasks?

We involved 32 participants with different backgrounds and asked each of them
to complete two bug fixing and two feature implementation tasks. Since we were
interested in measuring the influence of cognitive human aspects indipendently
from the context in which such tasks could have been completed (e.g., a specific
software system), we provided developers with stand-alone problems (i.e., not
requiring the knowledge of other software components) that could be solved in
the time we allocated for tasks (30 minutes). We measure attention- and memory-
related factors in isolation to have the personal characteristics of developers
before of the programming tasks given that cognitive human aspects cannot be
measured simultaneously with the programming tasks. We used state-of-the-art
psychometric tests to measure the attention- and memory-related factors. We test
our theory to verify whether there are relations between such variables and two
variables related to the outcome of the task: correctness (percentage of test cases
passed), time (minutes required to complete the task) and readability (computed
using the metric by Scalabrino et al. [199]).

Our results show that the correlation was not statistically significant between
all the attention- and memory-related factors and the one dependent variable
(i.e., correctness), both when considered alone and when combined in regression
models. The only developer-related variable that we found to be significantly
related to correctness is programming experience. On the other hand, we observe a
statistically significant relationship between an attention-related factors (alerting,
p-value = 0.046 , and orienting, p-value = 0.031) and code readability. In addition,
there is a significant correlation between a memory-related factor, immediate
recall, p-value = 0.013, and time. While experiments conducted with different
and larger samples are required to further corroborate our findings, our results
provide a clear message to future researchers interested in this field: Attention-

132 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

and memory-related factors should be investigated with other external quality, and
other cognitive human aspects should be investigated considering also other external
quality. Also, programming experience should always be taken into account, since
it is significantly related to both time and correctness.

The remainder of our chapter is organized as follows. In Section 8.2 we present
our theory. In Section 8.3 we report the design of our study, while in Section 8.4
we show the results of our analysis. Section 8.5 describes the threats to validity,
and Section 8.6 concludes this chapter.

8.2 Cognitive Factors and Software Development
Tasks

We theorize that attention- and memory-related factors allow to explain the
correctness of a task and the time needed to complete it. In the following section,
we provide more details on our theory.

8.2.1 Attention

Attention is part of executive functions, as planning, sequencing and cognitive
flexibility [74]. As explained in Section 8.1, attention can be controlled through
three key aspects, i.e., alerting, orienting and executive control, that provide the
reactivity to a specific event or stimulus [178].

As reported by Peitek et al. [173], Siegmund et al. [207] and Krueger et al.
[126], the attention is a neural activation both for the code writing [126] and
for the program comprehension [173, 207]. Thus, attention is an active part of
the right emisphere when the developer writes and comprehend the code. Given
these results [173, 126], the attention is important both for the implementation
of a new feature and for the fixing of a bug. We expect that higher efficiency
in the alerting network would positively affect the outcome (both correctness
and time) of coding tasks, because a developer would manage alert situation also
in stressful situations (i.e., a short deadline). For example, if developers has to
release a functionality and the deadline is one hour later, they find a bug a few
minutes before the deadline, they has to fix it in the minimum time possible. To

8.2. Cognitive Factors and Software Development Tasks 133

fix a bug quickly developers cannot be distracted and they needs to maintain an
alert state. We conjecture that higher efficiency in the orienting network would
allow to achieve better results (again, for both the dependent variables) because
developers would be able to better focus on a specific area of the code. In addition,
developers would be able to apply coding conventions in their writing activities
and verify that the code readability is positive or negative. Thus, we hypothesize
that higher efficiency in the executive control network would allow developers to
complete tasks better (correctness), more quickly (time) and to implement a code
readable (readability) because an individual with a high executive control is able
to better isolate conflicting stimuli (e.g., the ones from the environment from the
ones of the task) and, thus, focus more on the task at hand.

8.2.2 Memory

In the studies of Peitek et al. [173], Siegmund et al. [206] and Krueger et
al. [126], memory is another neural activation during the code writing and the
program comprehension. The immediate recall is part of the episodic memory
and this memory contains a good part of past events [201]. We conjecture that
developers with a good ability to recall might be able to better re-use patterns
of solutions applied in the past in similar situations. For example, developers
have to fix a bug and they have fixed a similar bug in past; thus, developers could
remember the related fix. This would result in saving time and, possibly, in higher
chances of spending more time ensuring that the solution provided is correct (i.e.,
in higher correctness) and also of writing readable code (i.e., high readability). The
human working memory provides a temporary storage of information necessary
for other cognitive tasks (e.g., reading or problem-solving) [40]. Specifically,
developers might use their working memory to elaborate solution strategies [205].
Furthermore, developers with a strong working memory can also manipulate
numbers and words to implement a readable code [173]. We conjecture that a
good working memory allows developers to complete a coding task both more
correctly and more efficiently (i.e., shorter time needed).

134 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

8.3 Design of the Study

The goal of the study is to verify to what extent attention and memory have an
impact on how developers complete coding tasks. The perspective is of researchers
that aim at measuring the influence of cognitive human factors on developers’
performance (time needed to complete a task and correctness and readability of
the solution).

Specifically, we formulate and address the following research questions:

• RQ1: To what extent do attention and memory have an impact on the
correctness of the solution of coding tasks?

• RQ2: To what extent do attention and memory have an impact on the time
needed to complete coding tasks?

• RQ3: To what extent do attention and memory have an impact on readability
of the solution of coding tasks?

To answer our research questions, we conducted a controlled experiment in
which we collect measurements for both the dependent (i.e., correctness, time,
and readability) and the independent variables (attention- and memory- related
factors) in which we are interested. Besides such factors, we also include other
independent variables that are commonly associated with the outcome of coding
tasks, i.e., task type, task difficulty, and developer’s programming experience.

Task Type. Some developers might find easier to implement a new feature
from scratch, because they do not need to deal with code written by other
developers; some others, instead, might find easier starting from a partial solution
and modify it to make it work as intended. Therefore, task type may be naturally
associated with the correctness of the solution. We also assume that task type
explains variance in the time needed to complete a task: we expect that bug fixing
tasks generally require more time since most of the code is written; however, this
might strongly depend on the developer, as previously explained [188].

Task Difficulty. Difficulty is naturally associated both with the correctness
of the solution: intuitively, it is more likely that a developer writes bug-free code
when presented with an easy task; similarly, we can assume that easier tasks take

8.3. Design of the Study 135

public boolean match(String word , String pattern) {
Map <Character , Character > m1 = new HashMap ();
Map <Character , Character > m2 = new HashMap ();

for (int i = 0; i < word.length (); ++i) {
char w = word.charAt(i);
char p = pattern.charAt(i);
if (!m1.containsKey(w)) m1.put(w, p);
if (!m2m1.containsKey(p)) m2m1.put(p, w);
if (m1.get(w) != p || m2m1.get(p) != w)
return false;

}

return true;
}

Figure 8.1: Example of an injected bug in the easy task. We decide to remove
the hash map m2 from the originally correct solution.

generally less time to be completed. While difficulty is somewhat a subjective
concept and it might depend on the knowledge and experience of the developer,
there are some objective features that make some tasks more difficult than others.
For example, everything else being equal, fixing a bug that involves one line
of code is inherently easier than fixing a bug involving multiple lines of code,
especially if these lines of code are in various part of the system [188, 242].

Experience. It is a common understanding that the programming experience
plays a significant role in different kinds of software engineering tasks [190, 191,
206]. We assume that more experienced developers can complete tasks more
correctly (higher correctness) and more quickly (lower time). We measure the
programming experience by asking developers to report the number of years of
experience (i.e., from their first programming task).

In the following, we describe (i) the context of our experiment, i.e., the
participants and the tasks, (ii) the procedure we used to collect the data, i.e., how
we run the experiment, and (iii) how we analyzed the collected data to answer
our research questions.

8.3.1 Context Selection

The context of our study is composed of objects, i.e., coding tasks, and subjects,
i.e., software developers. To select the tasks we used in our study, we relied on

136 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

LeetCode,1 an online platform commonly used to exercise coding problems. The
platform proposes a wide range of problems that can be solved by users in many
programming languages. A problem in LeetCode is usually composed by (i) a
description of the problem, and (ii) at least an example of input and expected
output. The developer can, then, implement a solution, manually test it, or submit
it. In the latter case, LeetCode runs a test suite to check if the solution is correct.
To select the participants, instead, we used convenience sampling, and we invited
people within the personal network of the authors and through student channels.
We provide below more details about the selection of tasks and participants.

Task Selection. The two aspects we controlled for in our experiment in
terms of task are the difficulty and the task type. As for the difficulty, we
aimed at having both easy and hard tasks. As for the task type, we wanted to
cover two categories of tasks typically performed during software development
and maintenance: feature implementation and bug fixing. In the first category,
developers are requested to implement code from scratch, while, in the second one,
they are provided with a partially correct solution that they need to modify. We
defined a total of 4 tasks to cover all the possible combinations of task difficulty
and type.

To define the tasks, as a first step, we started from the pool of all the problems
available in LeetCode, and filtered them based on the difficulty tags. The difficulty
tag on LeetCode is manually assigned by the person who originally proposed
the problem. We selected two separated pools of problems: easy ones and hard
ones, discarding problems of medium difficulty. We arbitrarily picked two easy
tasks and two hard tasks from such pools. We verified that for all the problems
we selected it was possible to submit a solution in Java since we planned to ask
developers to complete the tasks using Java.

The definition of the feature implementation tasks starting from the LeetCode
problems was straightforward: We simply provided the participants with the
problem description and we asked them to implement a solution from scratch. To
define the bug fixing tasks, instead, we needed to provide a buggy solution that
they would have fixed. To define the buggy solution, we started from the correct
solution provided by LeetCode itself. Then, we manually injected bugs in such a

1https://leetcode.com/

8.3. Design of the Study 137

Table 8.1: Tasks selected for the experiment. o and � indicate task types (bug
fixing and feature implementation), while and � indicate task difficulties (easy
and hard).

Problem Type Difficulty2 #Test Cases3

Find and Replace Pattern [13] o 47
Sort the Matrix Diagonally [15] o � 15
Duplicate Zeros [12] � 30
Regular Expression Matching [14] � � 352

solution. The type of modification we made to the code depended on the difficulty
of the task. Specifically, we introduced more articulated bugs in difficult task. We
report an example of injected bug in Figure 8.1. We report in Table 8.1 the main
features of the four tasks we defined. Specifically, for each task we report the
difficulty level of tasks, i.e., the value reported when we selected the task. The
difficulty of both the bug fixing tasks was later changed to “Medium”. In addition,
for each task we report the number of test cases on LeetCode. Participants did
not have access to these test cases and we internally used them to check the
correctness of the solutions they provided.

Participants Selection. To define the number of data points we would have
needed to observe variations in the dependent variables due to the factors we
studied, we ran a power analysis for linear regression.4 To identify a model with
f2 ' 0.15 (i.e., R2 ' 0.13) using 8 predictors (more on the model later) with a
80% power, we needed at least 109 data points. Since each participant produces
four data points, one for each task, we needed at least 28 participants. As output
of the recruiting phase, we involved 32 participants, distributed as follows: 18
bachelor students, 9 master students, 2 Ph.D. students, and 3 practitioners.

Table 8.2 reports some demographic information about the participants we
selected.

8.3.2 Data Collection

To collect data through our controlled experiment, the first step consisted in
(i) selecting the psychometric tests we have used to measure the attention- and

4We used the tool available at https://www.statskingdom.com/sample_size_regression.html

138 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

< 25 >= 25

Age
0

5
10

15
20

25

Woman Man

Gender

0
5

10
15

20
25

30

Bs student MS student Ph.D. student Practitioner

Occupation

0
5

10
15

20

1 2 3 4 5 6 15

Java programming experience
(years)

0
2

4
6

8
10

12
14

Figure 8.2: Demographic information about the participants.

memory-related factors we were interested in, and (ii) implementing them in a
web-app that allowed us to administer such tests. The second step was to run the
experiment. We describe below in detail these two steps.

Psychometric Tests.
We create a web-app that contains all psychometric tests. Through this web-

app, participants could perform psychometric tests in any place and we could
obtain automatically results of psychometric tests. To measure the attention-
related factors, we used the Flanker Inhibitory Control and Attention Test [89].
In such a test, the participant is presented with five arrows, each one pointing
either to the left or to the right. The goal of the participant is to indicate the
direction of the central arrow as quickly as possible. Such a procedure is repeated
several times and the arrow sets are presented in different ways. Some of them
are preceded by a cue, i.e., a hint about the time (double cue) and/or the place
(spatial cue) in which the arrows will appear in the next few instants. Some
others, instead, are presented without any cue (i.e., they are just shown on the
screen). When a cue is given, sometimes it is coherent with the time/location in

8.3. Design of the Study 139

which the arrows will appear, sometimes, instead, it is conflicting (e.g., the cue is
shown at the top, but the arrows appear at the bottom). It is possible to watch
the video of the test in our replication package [39]. The web-app measures the
response time (RT), i.e., the time the participant takes to select answer. Besides,
the web-app annotates, for each RT , the type of cue and if it was conflicting or
not. In total, we aimed at collecting 128 RT measures for each participant; the
test lasted about 10 minutes. After the first half (64 evaluations), participants
could pause for as long as they wanted before continuing with the second half. We
used the 128 RT measurements to compute the alerting, orienting, and executive
control efficiency metrics through the following formulas:

• alerting = mean(RTno cue)−mean(RTdouble cue)

• orienting = mean(RTcentral cue)−mean(RTspatial cue)

• executive control = mean(RTcoherent)−mean(RTconflicting)

The values of the metrics provide the efficiency of the alerting, orienting, and
executive control networks of the participants, respectively. Higher values generally
indicate that a given type of cue is effective and, therefore, the network (i.e.,
alerting) is more efficient. For example, for orienting, a value greater than 0
indicates that the spatial cue allows the participants have better response times,
i.e., they are able to focus on the cued area. The range of response times is
between 0 and 1700 ms.

The main test is preceded by a tutorial version of the test that lasts ∼3
minutes, in which we allow the participants to familiarize themselves with the
web-app.

To measure the memory-related factors, we use two tests: the BTACT Word
List Recall test [226] and the Symbol Digit Modalities Test [90]. The BTACT
Word List Recall is part of the BTACT battery of cognitive processing tasks for
adults. It allows to measure the immediate recall, or, more precisely, the immediate
episodic memory for verbal material. The participants were asked to carefully
listen to a set of 15 registered words, that we call C. Then, they were asked to
repeat all the words they could remember in 90 seconds. Participants could use a
button to indicate that they could not remember other words to proceed with the

140 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

test. To assign a score, one of the authors listened to each recording offline, and
manually annotated the words pronounced by each participant. Since most of
the participants were non-native English speakers, we were tolerant for imperfect
pronunciations, as long as it was clear that they referred to a word in the list C.
This is the main reason why we did not use automated speech recognition.

For each participant, given the list of words pronounced, P , we compute the
immediate recall as |P ∩ C|, i.e., the number of words correctly recalled. The
Symbol Digit Modalities Test allows us to measure processing speed and working
memory. In this test, participants were presented with a coding key mapping nine
abstract symbols to numbers from 1 to 9. Participants memorize the mapping for
the time they need. Then, they were presented 144 symbols in a random order
with the mapping still being visible. Finally, the participants had 120 seconds
to “decode”, i.e., to write in numbers, as many symbols as possible in the exact
order they were presented. Participants could not skip symbols. We compute the
working memory score as the total number of correctly decoded symbols.

Controlled Experiment Protocol. Before starting the experiment, we asked
each participant to fill in a form through which they provided basic demographic
information, i.e., gender, education level, occupation, and years of experience,
both with the Java programming language and overall. The experiment was
divided, for each participant, in two sessions, held on different days. We divided
the experiment in two days taking some risks and benefits. We risked that
developers could refuse the participation to the experiment. Another risk is that
participants could refuse to not continue in the second day. From the positive side,
participants could not get too tired because we decrease the number of tasks for
day. The alternative was to maintain the entire experiment on a single day. Using
this alternative, we risked that developers refused the invitation to the experiment
for the experiment lenght on a single day. Another risk with this alternative is
that we obtained wrong results because participants was tired. Each session had
the same structure. During each session, the first step was to administer the three
previously described psychometric tests in the following order: BTACT Word
List Recall (for immediate recall), Symbol Digit Modalities (for working memory),
and, finally, Flanker Inhibitory Control and Attention Test (for alerting, orienting,
and executive control). We measured memory-related factors at the beginning

8.3. Design of the Study 141

of the experiment because there could be the risk that participants was tired
after to have performed the Flanker Inhibitory Control and Attention. These test
have to be administered immediately before software development tasks because
attention- and memory-related factors have a short-lived validity, as demonstrated
in several previous studies [187, 124, 72]. The second step consisted in asking the
participants to complete two of the four programming tasks outlined previously.
In this phase, the author of the study, who supervise the experiment, shared a
Java file containing (i) the description of the task (i.e., the problem description
from LeetCode) and (ii) either a partial solution (for bug fixing tasks) or the
boilerplate for implementing the solution, such as the definition of the class and
the method that LeetCode expected (for feature implementation tasks). Each
participant had 30 minutes to complete each task. After 30 minutes, the author,
who supervise the experiment, asked the participants to submit remotely the
solution as it was.

To avoid biases due to the task execution order, we divided the participants in
four groups. Depending on the group, a given participant was assigned the tasks in
a different order and in different sessions. We defined the groups so as to assign at
least an easy and a hard task, as well as a bug fixing and a feature implementation
task for each session. This allowed us to control for fatigue (e.g., the second task
of the day could be performed systematically worse than the first one because
the participant was tired) and learning (e.g., participants could get quicker at
completing coding tasks in the second session because they trained in the first
one). We report the order in which the tasks were assigned to each group in Table
8.2. Because of the COVID-19 pandemic, it was not possible to completely control
for the environment in which the tasks were performed (e.g., run the study in a
laboratory with the same equipment). As such, we performed the study adopting
a remote setting, trying to recreate the lab setting we originally designed for the
lab study. Specifically, each execution session was remotely supervised by the
first author and, at each time, no more than two participants worked at the same
time. Furthermore, the author of the study who controlled the experiment asked
participants to turn on the microphone and the webcam, and to share the screen,
so that it was possible to verify the presence of any distractions. The author who
attended the experiment both guided the participants through the psychometric

142 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

tests and the tasks, and ensured that the tasks were performed as they were
intended (e.g., force to submit the solution in the determined time frame, control
if there were external distractions, such as phone calls). The psychometric tests
were always administered to one participant at a time, to avoid that participants
could affect each-other’s behavior (e.g., hearing the words in the Symbol Digit
Modalities Test). The participants were not aware of the fact that the tasks were
created using LeetCode problems. The author who attended the tasks made sure
that they did not look for/use solutions found on the web. Participants shared
their screens during the whole experimental sessions.

We operationalize the participants’ performance in terms of time required to
complete the task and quality of the solution (correctness and readability). We
use them as dependent variables in our analysis in order to answer our research
questions. To measure time, the author who supervise the experiment manually
recorded the time at which each participant started each task and the time at
which they reported that they concluded the task. We measure the time in
minutes.

To measure the correctness, we relied on the test suite provided by LeetCode,
as shown in Table 8.1. One of the authors copied and ran each solution given by
the participants in LeetCode and measured the number of passed test cases for
the task x, T+

x . For feature implementation tasks, we compute the correctness
simply as:

CorrectnessFI
x = T+

x

Tx

where Tx is the total number of test cases run by LeetCode for x. For bug fixing
tasks, instead, we could not use the same formula: The two bug fixing tasks already
came with a wrong solution. If developers left the provided solutions, without
modifying them they would have achieved higher correctness on the task with the
less buggy solution (the two buggy solutions had a different starting correctness).
To avoid this, we measured, instead, the relative change in correctness: Ideally, a
participant should achieve 100% correctness if he/she achieves 100% of passed
tests, 0% if the correctness does not change compared to the initial solution, and

8.3. Design of the Study 143

-100% if no tests pass. To achieve this, we used the following formula:

CorrectnessBF
x =

T+

x −BT+
x

1−BT+
x
, if T+

x ≥ BT+
x

T+
x −BT+

x

BT+
x

, otherwise

where BT+
x is the number of tests passed with the buggy solution provided by

the experimenters.
To measure readability, we used the approach defined by Scalabrino et al. [199].

While the model returns a binary assessment (i.e., readable or unreadable), it also
provides a number which ranges between 0 and 1, which represents the estimated
probability that the given snippet is readable. We use such a continuous value in
this study. In this case, however, we only consider feature implementation tasks
beacause the bug fixing is a task different from the writing of the code. We asked
the participants to fix the bug and not to write readable code. The readability of
the solutions of bug-fixing tasks, indeed, might strongly depend on the partial
solution we provided and we did not explicitly ask developers to improve the
readability of the provided solution. While we did not ask developers to write
readable code in feature implementation tasks as well, it is worth noting that
writing code from scratch forces developers to make choices that affect readability
(e.g., deciding identifiers’ names).

Before running the experiment, we obtained the approval of the ethical board
of our research institutions (ID number: ERB2021MCS5). Also, we ran a small
pilot study with three additional participants (not involved in the main study),
in order to test the web-app and the protocol and to spot any possible problem
before starting the study. Participants of the pilot study declared that the study
was feasible to performed it on two days. Thus, the protocol remained to be
carried out on two days.

8.3.3 Data Analysis

To answer both our research questions, we initially compute the correlation
between each continuous independent variable and the two dependent variables,
to understand if there is any direct relationship between couples of dependent/in-
dependent variables. To do this, we use the Spearman rank correlation ρ [212].

144 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

Table 8.2: Task assignment for each group. o and � indicate task types (bug
fixing and feature implementation), while and � indicate task difficulty (easy
and hard).

Group Session 1 Session 2
1st Task 2nd Task 1st Task 2nd Task

1 o � � � o�

2 � o� o � �

3 o� � � � o

4 � � o o� �

For the Spearman rank correlation, the correlation is weak if the coefficient is
between -0.3 and +0.3, moderate if the coefficient is between -0.3 and -0.7 or
between +0.3 and +0.7, strong if the coefficient is less than -0.7 or greater than
+0.7 [209].

Then, to also account for interactions between independent variables, we
combine them using explanatory regression models. Specifically, we use generalized
linear regression models with a Gaussian link function. The independent variables
we use for such models are alerting, orienting, executive control, working memory,
immediate recall, Java programming experience, task difficulty, and task type. To
answer RQ1, RQ2, and RQ3 we use correctness, time, and readability as the
dependent variables, respectively. Therefore, we define three models, one for each
dependent variable. Before performing the models, we delete outlier until the
skewness of all indipendent variables is less than 0.5. For each model, we report
its explanatory power (R2 and R2

m), the AIC, and the significance obtained for
each independent variable (p-values), to understand to what extent they explain
time, correctness, or readability. If one of the variables obtains a p-value lower
than 0.05, we reject the null hypothesis that such a variable does not explain
the dependent variable. Additionally, we use backward stepwise elimination to
gradually remove independent variables that give a non-significant benefit to the
model and obtain a minimal model for explaining both our dependent variables.
To this aim, we start with a full model containing all the independent variables,
M0. Then, we progressively remove the independent variable which is less likely

8.3. Design of the Study 145

to have a relationship with the dependent variable (i.e., the one with the highest
p-value, even if the it suggested statistical significance), we define a new model,
M1, and we measure its AIC. We repeat this steps, until the AIC of the model
Mi+1 is lower than the one of the previous version, Mi; in that case, we keep Mi

as the minimal model.
Finally, to corroborate our findings, for RQ1 we check if there is any significant

difference in the independent variables between tasks correctly completed (i.e.,
100% correctness) and tasks with at least one failing test case (i.e., correctness
lower than 100%). We carry out a similar analysis for RQ2: In this case, we check
the difference between tasks completed before the time was up (i.e., in less than
30 minutes) and when the time was over (i.e., exactly 30 minutes). For RQ3,
we check if there is any significant difference between readable and unreadable
solutions, based on the binary classification provided by the readability model. In
both the cases, we adopt two hypothesis tests, depending on the variable type:
We use the Mann-Whitney U test [142] for continuous variables such as time and
readability, while we use the Fisher exact test [92] for categorical variables such
as correctness. In RQ1, the null hypotheses are: “There is no difference in the
independent variable x between tasks correctly completed and tasks with at least
a bug”, while, in RQ2, the null hypotheses are: “There is no difference in the
independent variable x between tasks completed before the time was up and tasks
completed when the time was over”. For each family of hypotheses, we adjust the
p-values for multiple comparisons using the Benjamini and Hochberg procedure
[50]. We also report the effect size, using the Cliff’s delta [71], to understand the
magnitude of differences observed. Cliff’s delta δ lays in the interval [-1, 1]: the
effect size is negligible for |δ| < 0.148, small for 0.148 ≤ |δ| < 0.33, medium for
0.33 ≤ |δ| < 0.474, and large for |δ| ≥ 0.474 [71]. If δ > 0, it means that the first
distribution is larger than the second one, while the opposite happens otherwise
[71].

8.3.4 Replication Package

All the anonymized data acquired in the experiment are available in our
replication package [39], which also includes the four tasks (i.e., description and
solution of tasks) and the script used for statistical analysis.

146 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

Correctness

results$correctness

A
le

rt
in

g

Time

results$time

Readability

feature_implementation$readability

−
50

0
50

10
0

results$correctness

O
rie

nt
in

g

results$time feature_implementation$readability

−
50

0
50

10
0

results$correctness

E
xe

c.
co

nt
ro

l

results$time feature_implementation$readability −
15

0
−

50
0

results$correctness

W
or

ki
ng

 m
em

or
y

results$time feature_implementation$readability 20
60

10
0

14
0

results$correctness

Im
m

ed
ia

te
 r

ec
al

l

results$time feature_implementation$readability 2
4

6
8

12

results$correctness

P
ro

g.
 e

xp
er

ie
nc

e

results$time feature_implementation$readability 2
4

6
8

12

results$correctness

Ta
sk

 d
iff

ic
ul

ty

results$time

0.0 0.2 0.4 0.6 0.8 1.0

feature_implementation$readability

−1.0 −0.5 0.0 0.5 1.0

results$correctness

Ta
sk

 ty
pe

5 10 15 20 25 30

results$time

�

�

o

Figure 8.3: Relationships between the independent variables (y axis) and de-
pendent variables (x axis). We use scatter plots for continuous variables and
box plots for binary ones. o and � indicate task type (bug fixing and feature
implementation), while and � indicate the task difficulty (easy and hard).

8.4. Results 147

8.4 Results

In this section, we provide empirical evidence to answer our research questions
and discuss our results in Section 8.4.4. First of all, we want to verify if there are
possible effects of fatigue and learning. To do this, we analyzed results of Day
1 and results of Day 2. For correctness and time, there is a data deterioration.
Indeed, both for correctness and for time, we can see that in the second day
there is a light worsening of results. Indeed, on Day 1, 69% of solutions are not
completely corrected and 59% of solutions have been completed in 30 minutes.
On Day 2, 79% of solutions are not completely corrected and 67% of solutions
have been completed in 30 minutes. For readability, we obtain a stabilisation
of results. Indeed, 45% of solutions was readable code for Day 1 and 46% of
solution was readable for Day 2. These results demonstrate that the fatigue affects
correctness and time, but developers write readable code in all cases. Overall, the
participants achieved 26% of average correctness (21% for bug fixing and 32% for
feature implementation tasks). 25% of the participants were able to achieve 100%
correctness (30% for bug fixing and 22% for feature implementation). On average,
the participants involved in our study completed the tasks in ∼25.5 minutes (25.4
for bug fixing and 25.6 for feature implementation tasks). 59% of the participants
completed the task in 30 minutes, i.e., they submitted when the time was over
(58% for bug fixing and 61% for feature implementation tasks). Finally, 96.9%
of the solutions wrote readable code in feature implementation tasks. Figure
8.3 plots the pairwise relationships between each independent variable and the

Table 8.3: Spearman rank correlations ρ between independent variables and
dependent ones (significant correlations in bold).

Full dataset FI dataset
Correctness Time Readability

Alerting -0.006 -0.106 0.234
Orienting -0.041 0.160 0.208
Executive control 0.076 -0.020 0.016
Working memory 0.009 -0.032 0.005
Immediate recall 0.086 -0.017 -0.189
Programming experience 0.164 -0.324 -0.073

148 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

Readable code Unreadable code

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Figure 8.4: Boxplot of readability values related to feature implementation tasks.

three dependent ones we investigate, i.e., correctness (RQ1), time (RQ2), and
readability (RQ3). We use scatter plots for continuous variables and box plots
for categorical (binary) ones. Before commenting this figure, as mentioned in
Section 8.3, it is worth noting that some values of correctness could be between
0 and -1. Specifically, these values correspond to the correctness of bug fixing
tasks. As described in Section 8.3, the correctness of bug fixing tasks could be
equal to -100% when no test case passes on the final solution (i.e., not even the
ones that passed on the partial solution provided). It is also worth noting that for
readability we do not report the relationship with the task type variable since we
only considered feature implementation tasks, as explained in the design. The first
insight we get from such a figure is that there is no clear relationship between pairs
of independent and dependent variables. Interestingly, only a small difference in
correctness and time can be noticed for task-related variables (i.e., difficulty and
type). It is also possible to notice a slight correlation between readability and two
attention-related factor, i.e., orienting and alerting: higher attention seem to be

8.4. Results 149

associated to higher readability scores. This visual intuition is later quantitatively
confirmed in the results of RQ3.

Finally, we can state that readability is enough important to explain the
outcome of a coding tasks. Differently, correctness and time play a vey marginal
role in explaining the final outcome of a coding task.

8.4.1 RQ1: Impact of Attention and Memory on Correctness

Table 8.3 reports the Spearman ρ correlation coefficients between each in-
dependent variable and correctness. The first clear fact that can be deduced
from the correlations is that both attention-related factors (alerting, orienting,
and executive control) and memory-related ones (immediate recall and working
memory) achieve very low correlations with correctness. In particular, the highest
correlation is observed for immediate recall (∼0.09). The programming experience
achieve the highest correlation (ρ ' 0.16). No correlation, however, is significant,
when the p-values are adjusted with the Benjamini and Hochberg procedure [50].
In absolute terms, all the correlations with single independent variables are very
low.

We combine such variables using a generalized linear model, and we report
in Table 8.4 (upper part), for each independent variable, the coefficient and the
p-value obtained. The model confirms what the individual correlations suggested:
The programming experience is the only important variable (p-value = 0.040). It is
interesting to note that the programming experience in the full model is significant
also putting it in relation with other factors. In addition, it is the only variable
that remains in the minimal model after applying backward stepwise elimination.
In such a model, it achieves, again, statistical significance (p-value = 0.027). The
resulting model, however, has a very low explanatory power (R2

m = 0.03 for the
minimal model). Also in this case, no attention-related and memory-related factor
is significant, and the only factor that remains after backward stepwise elimination
is the programming experience.

Finally, Table 8.5 reports the results of the comparisons between distributions
of independent variables in the two groups taken into account (correct and
incorrect). While, again, no significant difference can be found, we observed a
non-negligible (small) effect size for programming experience.

150 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

Table 8.4: Explanatory models for correctness, time and readability. For minimal
models, we report the step of backward stepwise elimination at which each
marginally relevant independent variable was removed. For each model, we also
report AIC, R2, and R2

m.

Variable
Correctness

Full Model Minimal Model
Coefficient p-value Coefficient p-value

Intercept -3.563e-02 0.882 0.15104 0.028
Alerting 8.347e-05 0.936 Removed at step 2
Orienting 5.931e-04 0.598 Removed at step 4
Executive control 1.332e-04 0.922 Removed at step 3
Immediate recall 1.900e-02 0.389 Removed at step 6
Working memory -1.671e-04 0.939 Removed at step 1
Prog. experience 3.707e-02 0.040 0.03816 0.027
Task type 1.183e-01 0.210 Removed at step 7
Task difficulty -5.998e-02 0.524 Removed at step 5

AIC: 212, R2: 0.06, R2
m: <0.01 AIC: 201, R2: 0.03, R2

m: 0.03

Variable
Time

Full Model Minimal Model
Coefficient p-value Coefficient p-value

Intercept 29.155228 < 0.001 29.1137 < 0.001
Alerting -0.022749 0.056 Removed at step 7
Orienting 0.010888 0.398 Removed at step 4
Executive control 0.005244 0.735 Removed at step 3
Immediate recall -0.073613 0.770 Removed at step 2
Working memory 0.028154 0.260 Removed at step 5
Prog. experience -1.246597 < 0.001 -1.2407 < 0.001
Task type -1.542033 0.153 Removed at step 1
Task difficulty 0.154936 0.885 Removed at step 6

AIC: 836, R2: 0.28, R2
m: 0.23 AIC: 828, R2: 0.23, R2

m: 0.24

Variable
Readability

Full Model Minimal Model
Coefficient p-value Coefficient p-value

Intercept 0.722830 <0.001 0.722350 < 0.001
Alerting 0.000439 0.182 Removed at step 6
Orienting 0.000717 0.048 0.000876 0.012
Executive control 0.000226 0.597 Removed at step 2
Immediate recall -0.007807 0.264 Removed at step 5
Working memory 0.000587 0.396 Removed at step 4
Prog. experience -0.002530 0.655 Removed at step 1
Task type // // // //
Task difficulty 0.020942 0.486 Removed at step 3

AIC: -82, R2: 0.18, R2
m: 0.08 AIC: -88, R2: 0.10, R2

m: 0.08

8.4. Results 151

Summary of RQ1. Attention- and memory-related factors do not corre-
late with the correctness of a task. Conversely, programming experience
shows a statistically significant correlation with correctness, albeit with
small effect size.

8.4.2 RQ2: Impact of Attention and Memory on Time

As previously done forRQ1, we compute the Spearman ρ correlation coefficients
between our independent variables and time. We report the results in Table 8.3.
We observe that, while the correlations are low, they are generally higher than the
ones achieved for correctness. In this case, one of the attention-related variables,
i.e., orienting, achieves a relatively higher correlation coefficient (ρ ' 0.16).
Such a correlation, however, is not significant, as all the ones with all the other
independent variables except for one, i.e., programming experience. Such a
correlation is high compared to the others (ρ ' 0.32), but it is still weak in
absolute terms. With this correlation, we can state that participants having more
experience tend to work faster.

We report the generalized linear model for time in Table 8.4 (middle part).
Programming experience appears to be, also for time, the most important factor
(p-value < 0.001). It is worth noting that one of the attention-related factors,
i.e., alerting, is almost significant (p-value = 0.056) in the full model. However,
such a factor is not selected in the minimal model. Programming experience is
confirmed to be, again, the only relevant factor. For time, the minimal model
achieves a much higher explanatory power than the one we built for correctness
(R2

m = 0.24).

Finally, we report in Table 8.5 the results of the comparisons between distri-
butions of independent variables in the groups time-up (task finished in exactly
30 minutes) and non-time-up (task finished before the time was over). In this
case, we have two variables for which the difference is non-negligible (small) in
terms of effect size, i.e., orienting and programming experience. The last one, in
particular, is significantly higher for the coding tasks completed before the time
was over, as expected.

152 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

Table 8.5: Comparisons between independent variables in groups (correct vs
incorrect for RQ1, time-up vs non-time-up for RQ2, and readable vs unreadable
for RQ3) using Mann-Withney (†) and Fisher (‡) tests.

Comparison Variable p-value Cliff’s d

Correct vs. Incorrect

Alerting† 0.973 -0.039 (negl.)
Orienting† 0.973 -0.038 (negl.)
Executive control† 0.973 0.048 (negl.)
Immediate recall† 0.973 0.077 (negl.)
Working memory† 0.973 0.022 (negl.)
Programming experience† 0.154 0.265 (small)

Task difficulty‡ 1.000 0.020 (negl.)
Task type‡ 0.973 -0.102 (negl.)

Time-up vs. Non-time-up

Alerting† 0.746 -0.093 (negl.)
Orienting† 0.381 0.174 (small)
Executive control† 0.932 0.009 (negl.)
Immediate recall† 0.932 0.029 (negl.)
Working memory† 0.920 -0.059 (negl.)
Programming experience† 0.010 -0.323 (small)

Task difficulty‡ 0.746 0.097 (negl.)
Task type‡ 0.932 0.032 (negl.)

Readable vs. Unreadable

Alerting† 1.000 0.089 (negl.)
Orienting† 0.447 0.782 (large)
Executive control† 1.000 -0.056 (negl.)
Immediate recall† 1.000 -0.064 (negl.)
Working memory† 0.912 -0.379 (medi.)
Programming experience† 0.912 -0.355 (medi.)

Task difficulty‡ 1.000 0.016 (negl.)

8.4. Results 153

Summary of RQ2. Alerting and orienting are attention-related metrics
that show some signs of (non-significant) correlation with the time needed
to complete a task. Similarly to what observed for correctness, the
programming experience shows the highest correlation with time.

8.4.3 RQ3: Impact of Attention and Memory on Code Read-
ability

As discussed in RQ1 and RQ2, in Table 8.3 we report the Spearman ρ correla-
tion coefficients between our independent variables and readability. Differently
from the previous research questions, we can observe small correlations between
readability and attention-related factors. Specifically, there is correlation with
alerting (ρ = 0.234) and orienting (ρ = 0.208). In addition, there are negative very
small correlations on immediate recall (ρ = -0.189) and programming experience
(ρ = -0.073). When the p-values are adjusted with the Benjamini and Hochberg
procedure [50], however, we observe no significant correlation.

We report the generalized linear model obtained for readability in Table 8.4
(lower part). In this case, programming experience is not an important factor
because the p-value is not significant (0.655). In the full model, we can see that
the only significant factor is orienting (p-value = 0.048). This factor is important
also in the minimal model (p-value = 0.012).

At the end, we report in Table 8.5 the results of the comparisons between
distributions of independent variables in the groups readable and unreadable
solutions. In terms of effect size, we have two variables for which the difference
is non-negligible: working memory and programming experience (medium), and
orienting (large). The adjusted p-values, however, show no significant difference.
This is most likely due to the lower number of data points considered with
respect to the two other dependent variable, given that we only considered feature
implementation tasks for readability.

154 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

Summary of RQ3. Orienting is significantly associated with the code
readability in the generalized linear model, and orienting of developers
who produce readable code is largely higher compared to the ones who
produce unreadable code. However, such a difference is not significant,
mostly due to the lower number of data-points considered for this RQ.

8.4.4 Discussion

In our study, we aimed at assessing to what extent cognitive aspects are
correlated with developers’ performance. In particular, we investigated to what
extent attention and memory correlate with the time required to complete a
development task and the quality of the solution, both in terms of correctness and
readability. The empirical evidence provided by our study suggests a negative
result for memory and attention. Indeed, neither attention nor memory cannot
explain how developers complete coding tasks in terms of correctness and time.
While we obtain a negative result for time and correctness, we obtain a positive
result for readability. This result enforces other similar previous studies [173, 207]
that showed that the attention is an important factor for program comprehension.
Therefore, we can conclude that developers with high attention not only understand
code better, but also write more readable code. On the other hand, we did not
observe a correlation between readability and memory-related factors. It is worth
noting that explaining the outcome of the activity of code writing, either for
implementing new features or for fixing bugs, is an ambitious task, as the low
explanatory power obtained through by our models for time and, above all,
correctness show. This means that, probably, many other factors (including other
cognitive ones) should be taken into account to achieve results usable in practice.

As for correctness and time, our results show that there is a single variable
that clearly outperforms all the others: the programming experience in the specific
programming language (Java, in our study). Therefore, we can say, from our
results, that, while there are some weak relations between cognitive aspects and
the two variables we considered, correctness and time, experience alone is a far
better variable to explain both of them. In other words, there appears to be no
“shortcut” for improving in coding tasks from the point of view of cognitive human
aspects. However, the association observed between readability and attention

8.5. Threats to Validity 155

suggests that it should be possible to devise a training that allow developers to
improve cognitive functions [161] (attention, in our case). Such an improvement
could be beneficial for writing readable code.

Another interesting phenomenon we observed is the following: In general,
individual differences (in this case, in terms of programming experience) allow to
better explain the outcome than the differences among the tasks (in our study,
type and difficulty).

This means that the skills of a developer are far more important than the
characteristics of the task at hand for determining the success in completing it and
the time required. Also if we analyze only two type of tasks, this is in line with
what was previously observed for code understandability [198]. We can infer that
developers with low experience that work on a task might take more time and
might produce worse results regardless of the task at hand. This allows us to give a
clear recommendation to practitioners, which is already applied in many contexts
because of anecdotical evidence: Less experienced developers should benefit from
more experienced developers to achieve higher quality in the final software product.

8.5 Threats to Validity

As it is the case for any empirical study validity of our conclusions might have
been threatened in several ways.

Threat to Construct Validity. The biggest threats to internal validity are
related to the methodology used to measure the independent variables, above
all the attention- and memory-related ones. As described in Section 8.3, we use
state-of-the-art psychometric tests to achieve this goal and we replicated them in
our web-app. It might be possible that implementation errors have caused wrong
measurements. We thoroughly tested the web-app to avoid this. In addition, there
is the possibility that we use existing psychometric tests in a wrong way. Attention
and memory could be measured with dedicated and specialized psychometric
tests who are far from our knowledge. To the best of our knowledge, we could
not find dedicated, specialized psychometric tests related to the programming.
Thus, we used tests that have been already applied in software engineering [163].
The accuracy with which we could reliably measure reaction times in the Flanker

156 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

Inhibitory Control and Attention Test (for attention-related metrics) was within
tenths of a second; state-of-the-art measurement provide the measure of reaction
times with the precision of thousandths of a second. We believe that this is a
negligible limitation: the mean reaction time we obtained is ∼ 681ms, meaning
that the maximum error due to the lack of precision (±50ms) would be at most
∼ 7.3%. Such a level of precision would be mostly irrelevant. The original version
of the Flanker Inhibitory Control and Attention Test [89] we used for measuring
attention-related factors provided three blocks with 96 evaluations each (288 total
evaluations). We used reduced version of such a test [232], which provides two
blocks of 64 evaluations each (128 total evaluations). This allowed us to reduce
the effort for developers. It could be possible that psychometric tests might cause
fatigue in the developer and, therefore, reduce their ability of correctly completing
the tasks or increasing the time required to do so. To reduce this effect, we let
developer rest for a few minutes after the tests, before starting the tasks. We
could not avoid this, since measurements of attention-related factor may depend
on the context in which they are taken [147]: Measuring the variables may provide
irrelevant measures.

Threat to Internal Validity. One of threats to internal validity is related to
the measurement of programming experience. We asked developers to indicate the
number of years of experience in Java. Siegmund et al. [206] showed that, while
this is the most commonly used approach, other self-estimation questions might be
more relevant for students (e.g., self-assessment of experience compared to other
class mates). Therefore, alternative and more reliable measures of programming
experience might allow to achieve even higher correlations with both correctness
and time.

Another threat is related to the definition of the tasks. It could be argued
that the bug-injection methodology we used is not completely realistic since we
arbitrarily modified the code. However, a similar methodology has been adopted
in previous studies as well [114, 238, 237].

Also, it could be argued that the description of the problems taken from
LeetCode was not necessarily understandable to all developers. We assume that,
being exposed every day to the many users of LeetCode, any understandability
problem was removed from the description in time.

8.5. Threats to Validity 157

Another threat is related to the task choice. We chose tasks considering
different difficulty levels: However, the perceived difficulty is subjective by nature.
For example, the task Find and Replace Pattern could be easy for a developer
that has experience with regular expressions, but it could be difficult for others.

There could be other factors, different from attention and associated with
natural language competencies, which better explain code readability. For instance,
proficiency in English writing, knowledge of the English vocabulary. These factors
are not considered in this study. Hence, the recommendation to devise exercises
to improve attention and have a positive effect on code readability might be
overridden by the need to improve English language knowledge. We plan to
execute an extension of this study, measuring the effect of natural language
competencies of participants

Another threat is induced by the time-out: the time is not necessary to
complete the entire software development task. We select this time also after
the execution of pilot study. Participants of pilot study confirmed that the time
was sufficient to complete software development tasks. For this reason and for
decreasing possible fatiche and learning effects, we decide to adopt this time.

Threat to External Validity. Our findings may be mostly related to the
specific sample of developers we involved in the study. We included a total of 32
developers from four different countries. This is sufficient to avoid biases related
to common education background and occupation. Our a-priori power analysis
suggested that a sample of 26 developers would have been sufficient to achieve 80%
power. To further verify that our sample is not too small, we also run post-hoc
power analysis for our two regression models. We achieve 83.1% power for the
correctness model (RQ1), 99.9% for the time model (RQ2) and 95.0% for the
readability model (RQ3). Therefore, we can confidently conclude that the data on
which we based our analyses are sufficient to draw the conclusions we made.

The only hints at the fact a bigger sample could have resulted in additional
significant differences are given by (i) the non-negligible effect size we obtained
when comparing the orienting values between the time-up and the non-time-up
groups, and (ii) the almost significant p-value of alerting obtained in the full
regression model that predicts time (p-value = 0.056). In the former, the p-value
of the comparison (0.38) is quite far from the threshold we chose for significance

158 Chapter 8. Can Cognitive Human Factors Affect Code Quality?

(0.05), and the effect size, while being small (0.174), is very close to the negligible
threshold (0.148). As for the latter, instead, it can be noticed, given the coefficient
assigned to the alerting, such a value has an influence on the time fitted by the
model between -3.6 and +1.2 minutes. For comparison, the effect of programming
experience is between -18.8 and -1.3 minutes. In other words, it would require
developers to have a relatively high alerting efficiency for having a small benefit
in terms of time, according to the model, regardless of the significance of the
variable.

Another threat to external validity is the lack of control for the programming
experience. As described in Section 8.3, we recruited 32 participants without con-
sidering their programming experience. As written above, we invited participants
from four different countries. As a consequence, their background is heterogeneous.
Unfortunately, given the lack of control for the programming experience, there is
a developer with 15 years of Java experience that increase the average experience.
However, if we removed the outlier, we do not obtain dissimilar results. We have
not dissimilar results because for many solutions the correctness is equal to 0 and
the time is equal to 30.

Finally, another threat is the fact that we expect a R2 equal to 0.13. In
literature there is the study of Rasch et al. [188] in which authors obtain a R2

of 0.54. This study is different from our study beacause authors performed a
questionnaire with an high number of participants. The experiment is structurally
different from our controlled experiment.

8.6 Final Remarks

Attention and memory have been shown to be related to the outcome of
different kinds of tasks (e.g., driving or solving mathematical problems), and they
have also been used in the context of Software Engineering and Software Security
(e.g., for determining the usability of security APIs [163]). For this reason, we
theorize that attention- and memory-related factors also play a role in coding
tasks, which are at the base of software development and evolution. The goal of
this study is understand if cognitive human aspects can influence the resolution
of coding tasks. We conducted a controlled experiment with 32 developers, and

8.6. Final Remarks 159

we asked them to complete 4 tasks each. We measured three attention-related
metrics and two memory-related ones, widely used in the literature. We aim at
predicting the time needed to complete the tasks and the quality of the solutions,
both in terms of correctness and readability. We check the relationship between
independent variables (including also programming experience, task difficulty, and
task type) and the three dependent ones both by using single correlations and by
combining them in a regression model. On the one hand, we obtained a negative
result: neither attention- nor memory-related factor play a role in explaining
correctness and time. Programming experience is the only significant factor, much
more important than the task difficulty and the task type. On the other hand,
we observed that an attention-related factor (orienting) is associated with higher
capability of writing readable solutions.

From our results, we can derive some lessons learned:

• developers should train their attention level to write readable code;

• experienced developers should always support the less experienced ones
when the goal is to achieve higher quality in the final software product;

• researchers should study what personal characteristics can help developers
to implement quality code. In this way, they could propose to developers
specific training sessions for their development tasks.

Replications of our study are needed to further corroborate our findings. Also,
future research could focus on other cognitive aspects, such as intelligence (e.g.,
through IQ).

CHAPTER 9

Conclusion

Software developers need to read and comprehend the code before making
any change on it. Thus, code reading is one of the principal activities performed
by developers. For this reason, researchers have identified several factors that
influence code readability [146, 164, 48] and—on the basis of these factors—
they have proposed different models to automatically assess code readability
[59, 181, 80, 200, 199].

In a preliminary study conducted to understand what are real motivations
that push developers to improve the quality of source code through refactoring
operations, we observe that very often refactoring operations have been performed
to improve code readability. Such a result motivated this thesis: Studying code
readability during the evolution of a complex software system. Indeed, previous
studies on code readability have been conducted on single static code snippets
without considering the natural and continuous evolution of a software system.

In the context of this thesis, we analyzed three different aspects related
to code readability: (i) the importance of code readability for developers; (ii)

160

161

how readability evolves in software systems; (iii) if cognitive human aspects can
influence code readability.

Regarding the first aspect, we obtained that 83.8% of developers consider
code readability as an important factor in their source code writing activities.
As for the second aspect, our results showed that code readability of a file can
undergo small changes during the development of a software system: A file is
created readable and it remains readable or vice versa. Finally, turning to the
third aspect, we obtained that the orienting network, one of the attention-related
factors, correlates positively with code readability.

The results achieved in the context of this thesis can be used to derive the
following lessons learned that could be useful to identify new research directions:

• Identifying “when” to trigger refactoring recommendations. Product- and
process-related factors, including code readability, contribute to trigger refac-
toring operations. Such empirical evidence represents the basis for future
approaches able to predict “when”, during a project’s evolution, refactoring
recommendations are triggered. Indeed, such an aspect is currently ignored
in the refactoring recommenders literature, with researchers focusing their
attention on the core problem of generating meaningful recommendations.
However, recommending refactorings in a “context” in which developers
do not feel the need to refactor their code is unlikely to provide benefits.
An interesting research direction in this field is to build models able to
predict when refactoring recommendations would be welcome by software
developers.

• On learning refactoring operations to improve automatically code readability.
To improve code readability, one possibility worth exploiting in the future
is the application of deep learning techniques to refactoring recommenders.
Indeed, recent work has already shown the possibility to learn from code
changes [225]. However, no previous work has attempted to design refac-
toring recommenders learning from developers’ activities what meaningful
refactoring is in a given context.

• Lack of production-ready tools. The research community has developed many
good approaches for supporting specific refactorings and these approaches

162 Chapter 9. Conclusion

find little application in practice. As for code readability, the rename refac-
toring operations are suggested by reviewers to expand abbreviations used
in the identifiers of the code contributed in PRs. These recommendations
could be easily generated at commit time by one of the many approaches
proposed in the literature for the automatic expansion of abbreviations (see
e.g., the study by Lawrie et al. [128]). However, the lack of production-ready
tools could be the reason for the lack of adoption of such techniques. This
is an opportunity not only for researchers, but also for developers interested
in building tools useful for the partial automation of code review activities.

• New readability prediction models specifically designed to classify changes
instead of single snapshots would be necessary. In the research community,
there are different studies on readability prediction models, but these models
operate on single snapshots. With the results achieved in our mining study
on the evolution of code readability (Chapter 7), there is the possibility to
define an accurate readability evolution model using a discrete-time Markov
chain.

• Creation of specific cognitive training sessions for developers. Our results of
the empirical study in Chapter 8 indicate that there is a correlation between
personal characteristics (i.e., cognitive human factors) and code readability.
On the basis of these results, researchers could create specific cognitive
training sessions for developers [161]. Such cognitive training sessions can
help developers in the improvement of their personal characteristics useful
for development activities, in general, and for code readability, in particular.

163

Acknowledgements

Acknowledgements

When I enrolled at the University of Molise in 2012, I never thought I would live
these wonderful years of doctoral studies. Despite the many difficulties I encountered
along the way and the historical period in which we lived, these 3 years of doctorate
have served me to grow professionally and personally. I think that if there were not all
these difficulties, perhaps I would never have achieved the results obtained in this thesis.
In this small University I have lived many small things, of which I have many memories
and many emotions that I carry with me. Without them, I would never have become
the woman I am now. This long journey has given me the opportunity to meet some
great people and I do not hide that my life without them would not be the same.

I had the possibility to meet the best advisor I could ask for, Prof. Rocco Oliveto.
First of all, I have to thank him because he has allowed me to have my current preparation.
He is not only a Professor, but he is also a friend, a brother, who is always ready to
welcome you not as a member of his laboratory but as a member of his family. Yes,
because our laboratory is not only a place of work, but also a small family.

In these last 3 years, I had the opportunity to have fantastic colleagues at my side:
Simone, Gennaro, Giovanni, Michele and Emanuela. There is no order of importance for
me, because for me they are all at the same level. I thank them for enduring my fears,
my doubts and my anxieties. I thank them for rejoicing with me and for reassuring me
when the need arose. Thank you for making our laboratory unique!

164

165

Thanks to my best friend Vincenzo for being there during these 10 years, for being
my sidekick and my first fan. I thank him for always being there, if only to tell me:
"Don’t worry!"

Thanks to my best friends Rosangela and Federica for reminding me that friendship
is important and should never be put aside.

Thanks to my parents for supporting me in every single choice I made, for listening
to all my stories, for having suffered and rejoiced with me.

These 10 years have allowed me to meet also my boyfriend, Franz. In recent months,
he has been instrumental in helping me complete my journey. He supported me in every
single decision I made, and he put up with all of my moments of freaking out. He is my
hearth.

A special thanks also goes to my other lab colleagues, Andrea, Davide and Umberto,
and to all the guys who in these years have been part of our laboratory (who reads
knows who I’m talking about).

The doctorate gives you the opportunity to expand your knowledge. Despite the
pandemic, I had the opportunity to meet people who contributed to my professional
growth: prof. Alexander Serebrenik, prof. Gabriele Bavota, prof. Massimiliano Di Penta,
and prof.ssa Nicole Novielli. I am honored to have worked with you. Thank you!

Valentina Piantadosi
Isernia, May 6th, 2022

Appendices

166

APPENDIX A

Publications

J1 J. Pantiuchina, F. Zampetti, S. Scalabrino, V. Piantadosi, R. Oliveto, G. Bavota,
M. Di Penta. Why Developers Refactor Source Code: A Mining-based Study. Trans-
actions on Software Engineering and Methodology, 2020. DOI 10.1145/3408302.

J2 V. Piantadosi, F. Fierro, S. Scalabrino, A. Serebrenik, R. Oliveto. How does
code readability change during software Evolution. Empirical Software Engineering.
DOI 10.1007/s10664-020-09886-9.

J3 V. Piantadosi, S. Scalabrino, A. Serebrenik, N. Novielli, R. Oliveto Do Attention
and Memory Explain the Performance of Software Developers?. Submitted at
Empirical Software Engineering, 2022.

A.1 Other Publications
C1 V.Piantadosi, S. Scalabrino, R. Oliveto. Fixing of security vulnerabilities in open

source projects: A case study of Apache HTTP Server and Apache Tomcat. IEEE
Conference on Software Testing, Validation and Verification (ICST), 2019. DOI
10.1109/ICST.2019.00017.

168

A.1. Other Publications 169

J4 S. Scalabrino, G. Bavota, M. Linares-Vásquez, V. Piantadosi, M. Lanza, R.
Oliveto. API compatibility issues in Android: Causes and effectiveness of data-
driven detection techniques. Empirical Software Engineering, 2020. DOI 10.1007/s10664-
020-09877-w.

J5 V. Piantadosi, G. Rosa, D. Placella, S. Scalabrino, R. Oliveto. Detecting Func-
tional and Security-Related Issues in Smart Contracts: A Systematic Literature
Review. Submitted at Software Practice and Experience, 2021.

Bibliography

[1] 52north/wps pull request #73. https://github.com/52North/WPS/pull/73.
[2] apache/fineract pull request #366. https://github.com/apache/fineract/pull/

366.
[3] cbeust/testng pull request #1481. https://github.com/cbeust/testng/pull/1481.
[4] Code metrics for java code by means of static analysis.
[5] confluentinc/kafka-connect-elasticsearch pull request #251. https://github.com/

confluentinc/kafka-connect-elasticsearch/pull/251.
[6] dropwizard/dropwizard pull request #488. https://github.com/dropwizard/

dropwizard/pull/488.
[7] Dspace/dspace pull request #1083. https://github.com/DSpace/DSpace/pull/

1083.
[8] Dspace/dspace pull request #324. https://github.com/DSpace/DSpace/pull/324.
[9] eclipse/microprofile-fault-tolerance pull request #363. https://github.com/

eclipse/microprofile-fault-tolerance/pull/363.
[10] google/error-prone pull request #1071. https://github.com/google/error-prone/

pull/1071.
[11] kiegroup/optaplanner pull request #150. https://github.com/kiegroup/

optaplanner/pull/150.
[12] Leetcode problem: Duplicate zeros.
[13] Leetcode problem: Find and replace pattern.
[14] Leetcode problem: Regular expression matching.
[15] Leetcode problem: Sort the matrix diagonally.

170

BIBLIOGRAPHY 171

[16] minio/minio-java pull request #238. https://github.com/minio/minio-java/

pull/238.
[17] Pmd source code analyzer.
[18] samtools/htsjdk pull request #1067. https://github.com/samtools/htsjdk/pull/

1067.
[19] samtools/htsjdk pull request #599. https://github.com/samtools/htsjdk/pull/

599.
[20] spring-io/sagan pull request #179. https://github.com/spring-io/sagan/issues/

179.
[21] spring-io/sagan pull request #317. https://github.com/spring-io/sagan/pull/

317.
[22] spring-projects/spring-amqp pull request #346. https://github.com/

spring-projects/spring-amqp/pull/346.
[23] Teamamaze/amazefilemanager pull request #1577. https://github.com/

TeamAmaze/AmazeFileManager/pull/1577.
[24] zalando/nakadi pull request #626. https://github.com/zalando/nakadi/pull/

626.
[25] zalando/nakadi/ pull request #933. https://github.com/zalando/nakadi/pull/

933.
[26] zhcet-amu/zhcet-web pull request #136. https://github.com/zhcet-amu/

zhcet-web/pull/136.
[27] H. Akaike. Information theory and an extension of the maximum likelihood

principle. In 2nd International Symposium on Information Theory, 1973.
[28] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning natural coding

conventions. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 281–293, 2014.

[29] J. Allan. Cognitions, pages 441–441. Springer New York, New York, NY, 2013.
[30] A. Almogahed, M. Omar, and N. H. Zakaria. Categorization refactoring techniques

based on their effect on software quality attributes. International Journal of
Innovative Techno, logy and Exploring Engineering (IJITEE), pages 439–445.
2019.

[31] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini. On the impact of
refactoring on the relationship between quality attributes and design metrics. In
2019 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 1–11. IEEE, 2019.

[32] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. Code2vec: Learning distributed
representations of code. Proc. ACM Program. Lang., 3(POPL):40:1–40:29. Jan.
2019.

172 BIBLIOGRAPHY

[33] M. Alshayeb. Empirical investigation of refactoring effect on software quality.
Information and Software Technology, 51(9):1319 – 1326. 2009.

[34] Anonymous. Replication Package. https://github.com/replication-package/

why-refactoring, 2018.
[35] N. Anquetil and T. Lethbridge. Experiments with clustering as a software remod-

ularization method. In WCRE, pages 235–255, 1999.
[36] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc. Is it

a bug or an enhancement?: a text-based approach to classify change requests.
In Proceedings of the 2008 conference of the Centre for Advanced Studies on
Collaborative Research, page 23. IBM, 2008.

[37] D. Arcelli, V. Cortellessa, and C. Trubiani. Antipattern-based model refactoring
for software performance improvement. In Proceedings of the 8th International
ACM SIGSOFT Conference on Quality of Software Architectures, pages 33–42,
2012.

[38] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc. A new family
of software anti-patterns: Linguistic anti-patterns. In 17th European Conference
on Software Maintenance and Reengineering, CSMR 2013, pages 187–196, 2013.

[39] A. Authors. Replication package of "do attention and memory explain the perfor-
mance of software developers?", ????

[40] A. D. Baddeley. Working memory. Philosophical Transactions of the Royal Society
of London. B, Biological Sciences, 302(1110):311–324. The Royal Society London,
1983.

[41] D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects
models using lme4. Journal of Statistical Software, 67(1):1–48. 2015.

[42] G. Bavota. Using structural and semantic information to support software refac-
toring. In 34th International Conference on Software Engineering, ICSE 2012,
pages 1479–1482. IEEE Computer Society, 2012.

[43] G. Bavota, B. D. Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and O. Strollo.
When does a refactoring induce bugs? an empirical study. In Proceedings of the
IEEE International Working Conference on Source Code Analysis and Manipula-
tion, pages 104–113, 2012.

[44] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba. An experimental
investigation on the innate relationship between quality and refactoring. Journal
of Systems and Software, 107:1–14. Elsevier, 2015.

[45] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto. Automating extract class refac-
toring: an improved method and its evaluation. Empirical Software Engineering,
pages 1–48. 2013.

BIBLIOGRAPHY 173

[46] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto. Recommending refactoring
operations in large software systems. In Recommendation Systems in Software
Engineering, pages 387–419. Springer Berlin Heidelberg, 2014.

[47] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto. Using structural and semantic
measures to improve software modularization. Empirical Software Engineering,
18(5):901–932. 2013.

[48] K. Beck. Implementation Patterns. Addison Wesley, 2007.
[49] J. G. Benjafield, D. Smilek, and A. Kingstone. Cognition (4th ed.). New York:

Oxford University Press, 2010.
[50] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal statistical society:
series B (Methodological), 57(1):289–300. Wiley Online Library, 1995.

[51] K. H. Bennett and V. T. Rajlich. Software maintenance and evolution: A roadmap.
In Proceedings of the Conference on The Future of Software Engineering, pages
73–87, 2000.

[52] E. Bialystok and A.-M. DePape. Musical expertise, bilingualism, and execu-
tive functioning. Journal of Experimental Psychology: Human Perception and
Performance, 35(2):565. American Psychological Association, 2009.

[53] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. T.
Devanbu. Fair and balanced?: bias in bug-fix datasets. In Proceedings of the 7th
joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2009,
Amsterdam, The Netherlands, August 24-28, 2009, pages 121–130. ACM, 2009.

[54] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. Macleod, and M. J.
Merrit. Characteristics of Software Quality, volume 1 of TRW series of software
technology. Elsevier, 1978.

[55] B. W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, R. Madachy, and B. Steece.
Software Cost Estimation with Cocomo II with Cdrom. Prentice Hall PTR, USA,
1st edition, 2000.

[56] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and T. J.
Mowbray. Anti Patterns: Refactoring Software, Architectures, and Projects in
Crisis. John Wiley and Sons, 1st edition, Mar. 1998.

[57] Y. Brun, T. Lin, J. E. Somerville, E. Myers, and N. C. Ebner. Blindspots in
python and java apis result in vulnerable code. arXiv preprint arXiv:2103.06091.
2021.

[58] R. P. Buse and W. R. Weimer. A metric for software readability. In Proceedings of
the 2008 international symposium on Software testing and analysis, pages 121–130.
ACM, 2008.

174 BIBLIOGRAPHY

[59] R. P. Buse and W. R. Weimer. Learning a metric for code readability. Software
Engineering, IEEE Transactions on, 36(4):546–558. IEEE, 2010.

[60] J. Businge, A. Serebrenik, and M. G. J. van den Brand. Eclipse API usage: the
good and the bad. Softw. Qual. J., 23(1):107–141. 2015.

[61] G. Canfora, L. Cerulo, M. Cimitile, and M. D. Penta. How changes affect software
entropy: an empirical study. Empirical Software Engineering, 19(1):1–38. 2014.

[62] A. Capiluppi, M. Morisio, and P. Lago. Evolution of understandability in oss
projects. In Eighth European Conference on Software Maintenance and Reengi-
neering, 2004. CSMR 2004. Proceedings., pages 58–66. IEEE, 2004.

[63] J. Cappos, Y. Zhuang, D. Oliveira, M. Rosenthal, and K.-C. Yeh. Vulnerabilities as
blind spots in developer’s heuristic-based decision-making processes. In Proceedings
of the 2014 New Security Paradigms Workshop, pages 53–62, 2014.

[64] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello, B. Fonseca,
M. Ribeiro, and A. Chávez. Understanding the impact of refactoring on smells: A
longitudinal study of 23 software projects. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 465–475, 2017.

[65] A. Chatzigeorgiou and A. Manakos. Investigating the evolution of code smells
in object-oriented systems. Innovations in Systems and Software Engineering,
10(1):3–18. Springer, 2014.

[66] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia. How does
refactoring affect internal quality attributes?: A multi-project study. In Proceedings
of the 31st Brazilian Symposium on Software Engineering, pages 74–83, 2017.

[67] C. Chen, R. Alfayez, K. Srisopha, L. Shi, and B. Boehm. Evaluating human-assessed
software maintainability metrics. In National Software Application Conference,
pages 120–132. Springer, 2016.

[68] C.-T. Chen, Y. C. Cheng, C.-Y. Hsieh, and I.-L. Wu. Exception handling refactor-
ings: Directed by goals and driven by bug fixing. Journal of Systems and Software,
82(2):333 – 345. 2009.

[69] M. R. Chernick. Bootstrap methods: A guide for practitioners and researchers,
volume 619. John Wiley & Sons, 2011.

[70] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering (TSE), 20(6):476–493. June 1994.

[71] N. Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychological bulletin, 114(3):494. American Psychological Association, 1993.

[72] A. Conway, C. Jarrold, and A. Miyake. Variation in working memory. Oxford
University Press, 2008.

[73] C. Couto, J. E. Montandon, C. Silva, and M. T. Valente. Static correspondence
and correlation between field defects and warnings reported by a bug finding tool.
Software Quality Journal, 21:241–257. 2011.

BIBLIOGRAPHY 175

[74] J. R. Crawford. Introduction to the assessment of attention and executive func-
tioning. Neuropsychological rehabilitation, 8(3):209–211. Taylor & Francis, 1998.

[75] W. Cunningham. The wycash portfolio management system. OOPS Messenger,
4(2):29–30. 1993.

[76] F. Deissenbock and M. Pizka. Concise and consistent naming. In IWPC, 2005.
[77] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and A. De Lucia.

A developer centered bug prediction model. IEEE Transactions on Software
Engineering, 44(1):5–24. IEEE, 2017.

[78] T. J. DiCiccio and B. Efron. Bootstrap confidence intervals. Statistical science,
pages 189–212. JSTOR, 1996.

[79] D. Dig. A refactoring approach to parallelism. IEEE Software, 28(1):17–22. 2011.
[80] J. Dorn. A general software readability model. Master’s thesis, University of

Virginia, Charlottesville, VA, USA, 2012.
[81] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration: improving

software quality and reducing risk. Pearson Education, 2007.
[82] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting empirical

methods for software engineering research. In F. Shull, J. Singer, and D. I. K.
Sjøberg, editors, Guide to Advanced Empirical Software Engineering, pages 285–311.
Springer, 2008.

[83] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. Confusion in code reviews:
Reasons, impacts, and coping strategies. In X. Wang, D. Lo, and E. Shihab,
editors, 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, pages
49–60. IEEE, 2019.

[84] S. J. Ebisch, D. Mantini, R. Romanelli, M. Tommasi, M. G. Perrucci, G. L. Romani,
R. Colom, and A. Saggino. Long-range functional interactions of anterior insula
and medial frontal cortex are differently modulated by visuospatial and inductive
reasoning tasks. Neuroimage, 78:426–438. Elsevier, 2013.

[85] B. A. Eriksen and C. W. Eriksen. Effects of noise letters upon the identification
of a target letter in a nonsearch task. Perception & psychophysics, 16(1):143–149.
Springer, 1974.

[86] L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional,
2(3):17–23. May 2000.

[87] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. O. Adesope. The effect of poor source
code lexicon and readability on developers’ cognitive load. In Proceedings of the
26th Conference on Program Comprehension, ICPC, pages 286–296, 2018.

[88] S. Fakhoury, D. Roy, S. A. Hassan, and V. Arnaoudova. Improving source code
readability: Theory and practice. In IEEE International Conference on Program
Comprehension, page To appear. IEEE, 2019.

176 BIBLIOGRAPHY

[89] J. Fan, B. D. McCandliss, T. Sommer, A. Raz, and M. I. Posner. Testing
the efficiency and independence of attentional networks. Journal of cognitive
neuroscience, 14(3):340–347. MIT Press One Rogers Street, Cambridge, MA
02142-1209, USA journals-info . . . , 2002.

[90] R. P. Fellows and M. Schmitter-Edgecombe. Symbol digit modalities test:
Regression-based normative data and clinical utility. Archives of Clinical Neu-
ropsychology, 35(1):105–115. Oxford University Press, 2020.

[91] M. Fischer, M. Pinzger, and H. C. Gall. Populating a release history database
from version control and bug tracking systems. In 19th International Conference
on Software Maintenance (ICSM 2003), The Architecture of Existing Systems,
22-26 September 2003, Amsterdam, The Netherlands, page 23, 2003.

[92] R. A. Fisher. On the interpretation of χ 2 from contingency tables, and the
calculation of p. Journal of the Royal Statistical Society, 85(1):87–94. JSTOR,
1922.

[93] R. Flesch. How to write plain english: A book for la wyers and consumers.
HeinOnline, 2014.

[94] B. Floyd, T. Santander, and W. Weimer. Decoding the representation of code in
the brain: An fmri study of code review and expertise. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), pages 175–186. IEEE,
2017.

[95] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou. Jdeodorant: identi-
fication and application of extract class refactorings. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, pages 1037–1039.
ACM, 2011.

[96] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

[97] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley, 1999.

[98] M. Fowler and M. Foemmel. Continuous integration. Thought-Works, 122:14. 2006.
http://www. thoughtworks. com/Continuous Integration. pdf.

[99] M. D. Gellman and J. R. Turner. Cognition, pages 441–441. Springer New York,
New York, NY, 2013.

[100] R. C. Gershon, M. V. Wagster, H. C. Hendrie, N. A. Fox, K. F. Cook, and C. J.
Nowinski. Nih toolbox for assessment of neurological and behavioral function.
Neurology, 80(11 Supplement 3):S2–S6. AAN Enterprises, 2013.

[101] R. B. Grady. Practical software metrics for project management and process
improvement. Prentice-Hall, Inc., 1992.

BIBLIOGRAPHY 177

[102] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence using
software change history. IEEE Transactions on software engineering, 26(7):653–661.
IEEE, 2000.

[103] C. S. Green and D. Bavelier. Action-video-game experience alters the spatial
resolution of vision. Psychological science, 18(1):88–94. SAGE Publications Sage
CA: Los Angeles, CA, 2007.

[104] M. Habib and M. Besson. What do music training and musical experience teach us
about brain plasticity? Music Perception, 26(3):279–285. University of California
Press USA, 2009.

[105] J. Halberda, M. M. Mazzocco, and L. Feigenson. Individual differences in non-
verbal number acuity correlate with maths achievement. Nature, 455(7213):665–668.
Nature Publishing Group, 2008.

[106] M. Hall, N. Walkinshaw, and P. McMinn. Supervised software modularisation.
In 28th IEEE International Conference on Software Maintenance, ICSM, pages
472–481, 2012.

[107] M. H. Halstead. Elements of software science, volume 7 of Operating and program-
ming systems series. Elsevier, 1977.

[108] F. E. Harrell Jr, with contributions from Charles Dupont, and many others. Hmisc:
Harrell Miscellaneous, 2017. R package version 4.0-3.

[109] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang. An investigation on the feasibility
of cross-project defect prediction. Automated Software Engineering, 19(2):167–199.
Springer, 2012.

[110] B. Henderson-Sellers, L. L. Constantine, and I. M. Graham. Coupling and cohesion
(towards a valid metrics suite for object-oriented analysis and design). Object
Oriented Systems, 3:143–158. 1996.

[111] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu. On the naturalness
of software. Communications of the ACM, 59(5):122–131. ACM New York, NY,
USA, 2016.

[112] Y. Huang, X. Liu, R. Krueger, T. Santander, X. Hu, K. Leach, and W. Weimer.
Distilling neural representations of data structure manipulation using fmri and
fnirs. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 396–407. IEEE, 2019.

[113] M. Hubert and E. Vandervieren. An adjusted boxplot for skewed distributions.
Computational statistics & data analysis, 52(12):5186–5201. Elsevier, 2008.

[114] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effec-
tiveness of dataflow-and control-flow-based test adequacy criteria. In Proceedings
of 16th International conference on Software engineering, pages 191–200. IEEE,
1994.

178 BIBLIOGRAPHY

[115] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán, and D. E.
Damian. An in-depth study of the promises and perils of mining GitHub. Empirical
Software Engineering, 21(5):2035–2071. 2016.

[116] Z. Karas, A. Jahn, W. Weimer, and Y. Huang. Connecting the dots: rethinking
the relationship between code and prose writing with functional connectivity. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
767–779, 2021.

[117] N. Kasto and J. Whalley. Measuring the difficulty of code comprehension tasks
using software metrics. In Proceedings of the Fifteenth Australasian Computing
Education Conference-Volume 136, pages 59–65, 2013.

[118] D. Kawrykow and M. P. Robillard. Improving api usage through automatic
detection of redundant code. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, pages 111–122, 2009.

[119] M. Kim, T. Zimmermann, and N. Nagappan. A field study of refactoring challenges
and benefits. In Proceedings of the 20th International Symposium on Foundations
of Software Engineering, Nov. 2012.

[120] M. Kim, T. Zimmermann, and N. Nagappan. An empirical study of refactoring
challenges and benefits at microsoft. Software Engineering, IEEE Transactions
on, 40(7):633–649. July 2014.

[121] S. Kim and M. D. Ernst. Which warnings should I fix first? In Proceedings
of the joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 45–54, 2007.

[122] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller. Predicting faults from cached
history. In 29th International Conference on Software Engineering (ICSE 2007),
pages 489–498, 2007.

[123] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory study
of how developers seek, relate, and collect relevant information during software
maintenance tasks. IEEE Transactions on software engineering, 32(12):971–987.
IEEE, 2006.

[124] J. D. Koen, M. Aly, W.-C. Wang, and A. P. Yonelinas. Examining the causes of
memory strength variability: Recollection, attention failure, or encoding variability?
Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(6):1726.
American Psychological Association, 2013.

[125] G. P. Krishnan and N. Tsantalis. Unification and refactoring of clones. In
Proceedings of the IEEE Conference on Software Maintenance, Reengineering and
Reverse Engineering, pages 104–113, 2014.

BIBLIOGRAPHY 179

[126] R. Krueger, Y. Huang, X. Liu, T. Santander, W. Weimer, and K. Leach. Neuro-
logical divide: an fmri study of prose and code writing. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pages 678–690. IEEE,
2020.

[127] A. Kuhn, S. Ducasse, and T. Gîrba. Semantic clustering: Identifying topics in
source code. Information and Software Technology, 49(3):230–243. 2007.

[128] D. Lawrie and D. Binkley. Expanding identifiers to normalize source code vo-
cabulary. In 2011 27th IEEE International Conference on Software Maintenance
(ICSM), pages 113–122, 2011.

[129] D. Lawrie, H. Feild, and D. Binkley. Syntactic identifier conciseness and consistency.
In SCAM’06, pages 139–148, 2006.

[130] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? a study of
identifiers. In ICPC’06, 2006.

[131] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. Effective identifier names for
comprehension and memory. ISSE, 3(4):303–318. 2007.

[132] T. Lee, J. Lee, and H. P. In. Effect analysis of coding convention violations on
readability of post-delivered code. IEICE Transactions, 98-D(7):1286–1296. 2015.

[133] A. M. Leitão. Detection of redundant code using r2d2. Software Quality Journal,
12(4):361–382. Dec. 2004.

[134] J.-L. Letouzey and T. Coq. The sqale analysis model: An analysis model compliant
with the representation condition for assessing the quality of software source code.
In Second International Conference on Advances in System Testing and Validation
Lifecycle, pages 43–48. IEEE, 2010.

[135] Z. Li, X.-Y. Jing, and X. Zhu. Progress on approaches to software defect prediction.
Iet Software, 12(3):161–175. IET, 2018.

[136] R. Likert. A technique for the measurement of attitudes. Archives of psychology.
1932.

[137] L. Lilienthal, E. Tamez, J. T. Shelton, J. Myerson, and S. Hale. Dual n-back
training increases the capacity of the focus of attention. Psychonomic bulletin &
review, 20(1):135–141. Springer, 2013.

[138] B. Lin, C. Nagy, G. Bavota, and M. Lanza. On the impact of refactoring operations
on code naturalness. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 594–598, 2019.

[139] B. Lin, S. Scalabrino, A. Mocci, R. Oliveto, G. Bavota, and M. Lanza. Investigating
the use of code analysis and nlp to promote a consistent usage of identifiers. In
2017 IEEE 17th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 81–90. IEEE, 2017.

[140] M. Mahmoudi, S. Nadi, and N. Tsantalis. Are refactorings to blame? an empirical
study of refactorings in merge conflicts. In 26th IEEE International Conference

180 BIBLIOGRAPHY

on Software Analysis, Evolution and Reengineering, SANER 2019, pages 151–162,
2019.

[141] E. d. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik. An empirical
study on the removal of self-admitted technical debt. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 238–248.
IEEE, 2017.

[142] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics, pages
50–60. JSTOR, 1947.

[143] O. Maqbool and H. A. Babri. Hierarchical clustering for software architecture
recovery. IEEE Transactions on Software Engineering, 33(11):759–780. 2007.

[144] A. Marcus and D. Poshyvanyk. The conceptual cohesion of classes. In Proc. of
21st IEEE ICSM, pages 133–142. IEEE CS Press, 2005.

[145] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the conceptual cohesion of
classes for fault prediction in object-oriented systems. IEEE Trans. Software Eng.,
34(2):287–300. 2008.

[146] R. C. Martin. Clean Code: A Handbook of Agile Sofware Craftsmanship. Prentice
Hall, 2009.

[147] R. L. Matchock and J. T. Mordkoff. Chronotype and time-of-day influences on
the alerting, orienting, and executive components of attention. Experimental brain
research, 192(2):189–198. Springer, 2009.

[148] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320. Dec. 1976.

[149] J. Micco. Flaky tests at google and how we mitigate them. Online] https://testing.
googleblog. com/2016/05/flaky-tests-at-google-and-how-we. html. 2016.

[150] S. Misra and I. Akman. Comparative study of cognitive complexity measures. In
2008 23rd International Symposium on Computer and Information Sciences, pages
1–4. IEEE, 2008.

[151] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur. Decor: A method for
the specification and detection of code and design smells. IEEE Transactions on
Software Engineering, 36:20–36. 2010.

[152] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi. Balancing agility
and formalism in software engineering. chapter A Case Study on the Impact of
Refactoring on Quality and Productivity in an Agile Team, pages 252–266. 2008.

[153] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In 30th International
Conference on Software Engineering (ICSE 2008), pages 181–190, 2008.

BIBLIOGRAPHY 181

[154] N. Munaiah, F. Camilo, W. Wigham, A. Meneely, and M. Nagappan. Do bugs
foreshadow vulnerabilities? an in-depth study of the chromium project. Empirical
Software Engineering, 22(3):1305–1347. 2017.

[155] E. Mundy and C. K. Gilmore. Children’s mapping between symbolic and non-
symbolic representations of number. Journal of experimental child psychology,
103(4):490–502. Elsevier, 2009.

[156] G. C. Murphy, M. Kersten, and L. Findlater. How are java software developers
using the elipse ide? IEEE software, 23(4):76–83. IEEE, 2006.

[157] E. Murphy-Hill and A. P. Black. Refactoring tools: Fitness for purpose. IEEE
software, 25(5):38–44. IEEE, 2008.

[158] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know
it. Transactions on Software Engineering, 38(1):5–18. 2011.

[159] M. Musso, E. Kyndt, E. Cascallar, and F. Dochy. Predicting mathematical
performance: The effect of cognitive processes and self-regulation factors. Education
Research International, 2012. Hindawi, 2012.

[160] S. Nour, E. Struys, and H. Stengers. Attention network in interpreters: The role
of training and experience. Behavioral Sciences, 9(4):43. Multidisciplinary Digital
Publishing Institute, 2019.

[161] Y. Oded. Biofeedback-based mental training in the military—the “mental gym™”
project. Biofeedback, 39(3):112–118. Association for Applied Physiology and
Biofeedback 10200 West 44th Ave., No . . . , 2011.

[162] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos, and Y. Zhuang. It’s
the psychology stupid: how heuristics explain software vulnerabilities and how
priming can illuminate developer’s blind spots. In Proceedings of the 30th Annual
Computer Security Applications Conference, pages 296–305, 2014.

[163] D. S. Oliveira, T. Lin, M. S. Rahman, R. Akefirad, D. Ellis, E. Perez, R. Bobhate,
L. A. DeLong, J. Cappos, and Y. Brun. API blindspots: Why experienced
developers write vulnerable code. In Fourteenth Symposium on Usable Privacy
and Security ({SOUPS} 2018), pages 315–328, 2018.

[164] A. Oram and G. Wilson. Beautiful Code: Leading Programmers Explain How They
Think. O’reilly, 2007.

[165] M. Paixão, M. Harman, Y. Zhang, and Y. Yu. An empirical study of cohesion
and coupling: Balancing optimization and disruption. IEEE Trans. Evolutionary
Computation, 22(3):394–414. 2018.

[166] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and A. D. Lucia. On
the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation. Empirical Software Engineering, 23(3):1188–1221. 2018.

[167] F. Palomba, A. D. Lucia, G. Bavota, and R. Oliveto. Anti-pattern detection:
Methods, challenges, and open issues. Advances in Computers, 95:201–238. 2015.

182 BIBLIOGRAPHY

[168] F. Palomba, D. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaidman, and A. Sere-
brenik. Beyond technical aspects: How do community smells influence the intensity
of code smells? IEEE Transactions on Software Engineering. IEEE, 2018.

[169] J. Pantiuchina, G. Bavota, M. Tufano, and D. Poshyvanyk. Towards just-in-time
refactoring recommenders. In Proceedings of the 26th Conference on Program
Comprehension, ICPC 2018, pages 312–315, 2018.

[170] J. Pantiuchina, M. Lanza, and G. Bavota. Improving code: The (mis) perception of
quality metrics. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 80–91. IEEE, 2018.

[171] J. Pantiuchina, F. Zampetti, S. Scalabrino, V. Piantadosi, R. Oliveto, G. Bavota,
and M. D. Penta. Why developers refactor source code: A mining-based study.
ACM Transactions on Software Engineering and Methodology (TOSEM), 29(4):1–
30. ACM New York, NY, USA, 2020.

[172] M. C. Passolunghi, B. Vercelloni, and H. Schadee. The precursors of mathemat-
ics learning: Working memory, phonological ability and numerical competence.
Cognitive development, 22(2):165–184. Elsevier, 2007.

[173] N. Peitek, J. Siegmund, S. Apel, C. Kästner, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann. A look into programmers’ heads. IEEE Transactions
on Software Engineering, 46(4):442–462. IEEE, 2018.

[174] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman. An empirical
investigation of how and why developers rename identifiers. In Proceedings of the
2Nd International Workshop on Refactoring, pages 26–33, 2018.

[175] V. Piantadosi, F. Fierro, S. Scalabrino, A. Serebrenik, and R. Oliveto. How
does code readability change during software evolution? Empirical Software
Engineering, 25(6):5374–5412. Springer, 2020.

[176] V. Piantadosi, F. Fierro, S. Scalabrino, A. Serebrenik, and R. Oliveto. Replication
package. https://github.com/stakelab/replication-readability-evolution,
2020.

[177] V. Piantadosi, S. Scalabrino, A. Serebrenik, N. Novielli, and R. Oliveto. Do
attention and memory explain the performance of software developers? Submitted
at Empirical Software Engineering. Springer.

[178] M. I. Posner. Orienting of attention. Quarterly journal of experimental psychology,
32(1):3–25. SAGE Publications Sage UK: London, England, 1980.

[179] M. I. Posner and S. E. Petersen. The attention system of the human brain. Annual
review of neuroscience, 13(1):25–42. Annual Reviews 4139 El Camino Way, PO
Box 10139, Palo Alto, CA 94303-0139, USA, 1990.

BIBLIOGRAPHY 183

[180] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov. Dual ecological measures of
focus in software development. In 2013 35th International Conference on Software
Engineering (ICSE), pages 452–461. IEEE, 2013.

[181] D. Posnett, A. Hindle, and P. Devanbu. A simpler model of software readability.
In Proceedings of the 8th Working Conference on Mining Software Repositories,
pages 73–82. ACM, 2011.

[182] A. Potdar and E. Shihab. An exploratory study on self-admitted technical debt.
In 30th IEEE International Conference on Software Maintenance and Evolution,
Victoria, BC, Canada, September 29 - October 3, 2014, pages 91–100. IEEE
Computer Society, 2014.

[183] K. Praditwong, M. Harman, and X. Yao. Software module clustering as a multi-
objective search problem. IEEE Transactions on Software Engineering, 37(2):264–
282. 2011.

[184] R. Purushothaman and D. E. Perry. Toward understanding the rhetoric of small
source code changes. IEEE Transactions on Software Engineering, 31(6):511–526.
IEEE, 2005.

[185] F. Rahman, D. Posnett, and P. Devanbu. Recalling the" imprecision" of cross-
project defect prediction. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, pages 1–11, 2012.

[186] V. Rajlich and P. Gosavi. Incremental change in object-oriented programming.
IEEE Softw., 21(4):62–69. IEEE Computer Society Press, July 2004.

[187] M. D. Rapport, M. J. Kofler, R. M. Alderson, T. M. Timko Jr, and G. J. DuPaul.
Variability of attention processes in adhd: Observations from the classroom.
Journal of Attention Disorders, 12(6):563–573. Sage Publications Sage CA: Los
Angeles, CA, 2009.

[188] R. H. Rasch and H. L. Tosi. Factors affecting software developers’ performance:
An integrated approach. MIS quarterly, pages 395–413. JSTOR, 1992.

[189] B. Ray, D. Posnett, V. Filkov, and P. T. Devanbu. A large scale study of
programming languages and code quality in github. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 155–165, 2014.

[190] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato. The role of
experience and ability in comprehension tasks supported by UML stereotypes. In
Proc. of 29th ICSE, pages 375–384. IEEE Computer Society, 2007.

[191] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato. How developers’
experience and ability influence web application comprehension tasks supported
by uml stereotypes: A series of four experiments. IEEE Transactions on Software
Engineering, 36(1):96–118. IEEE, 2009.

184 BIBLIOGRAPHY

[192] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do professional devel-
opers comprehend software? In 2012 34th International Conference on Software
Engineering (ICSE), pages 255–265. IEEE, 2012.

[193] B. Rosner. Fundamentals of Biostatistics. Brooks/Cole, Boston, MA, 7th edition
edition, 2011.

[194] C. K. Roy. Large scale clone detection, analysis, and benchmarking: An evolu-
tionary perspective. In 12th IEEE International Workshop on Software Clones,
IWSC, 2018.

[195] E. Roy. Cognitive Function, pages 448–449. Springer New York, New York, NY,
2013.

[196] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect
reports using natural language processing. In Proc. of 29th ICSE, pages 499–510,
2007.

[197] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and
R. Oliveto. Automatically assessing code understandability: How far are we?
In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pages 417–427. IEEE Press, 2017.

[198] S. Scalabrino, G. Bavota, C. Vendome, D. Poshyvanyk, and R. Oliveto. Au-
tomatically assessing code understandability. IEEE Transactions on Software
Engineering. IEEE, 2019.

[199] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk. A comprehen-
sive model for code readability. Journal of Software: Evolution and Process, 30(6).
2018.

[200] S. Scalabrino, M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto. Improving
code readability models with textual features. In Program Comprehension (ICPC),
2016 IEEE 24th International Conference on, pages 1–10. IEEE, 2016.

[201] D. L. Schacter, A. D. Wagner, and R. L. Buckner. Memory systems of 1999.
Oxford University Press, 2000.

[202] E. G. Schellenberg. Music lessons enhance iq. Psychological science, 15(8):511–514.
SAGE Publications Sage CA: Los Angeles, CA, 2004.

[203] Z. Sharafi, Y. Huang, K. Leach, and W. Weimer. Toward an objective measure of
developers’ cognitive activities. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(3):1–40. ACM New York, NY, USA, 2021.

[204] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall/CRC, 4 edition, 2007.

[205] B. Shneiderman and R. Mayer. Syntactic/semantic interactions in programmer
behavior: A model and experimental results. International Journal of Computer
& Information Sciences, 8(3):219–238. Springer, 1979.

BIBLIOGRAPHY 185

[206] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg. Measuring and
modeling programming experience. Empirical Software Engineering, 19(5):1299–
1334. 2014.

[207] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner, A. Begel,
A. Bethmann, and A. Brechmann. Measuring neural efficiency of program compre-
hension. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 140–150, 2017.

[208] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions of GitHub
contributors. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 858–870. ACM, 2016.

[209] L. Sloan. Learn about Spearman’s Rank-order Correlation Coefficient in SPSS
with Data from the General Social Survey (2012). SAGE Publications, 2015.

[210] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking defect warnings across versions.
In Proceedings of the 2006 international workshop on Mining software repositories,
pages 133–136. ACM, 2006.

[211] D. Spadini, F. Palomba, T. Baum, S. Hanenberg, M. Bruntink, and A. Bacchelli.
Test-driven code review: an empirical study. In Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, pages 1061–1072, 2019.

[212] C. Spearman. The proof and measurement of association between two things.
Appleton-Century-Crofts, 1961.

[213] D. Spencer. Card sorting: Designing usable categories. Rosenfeld Media, 2009.
[214] D. Spinellis, P. Louridas, and M. Kechagia. The evolution of C programming prac-

tices: a study of the unix operating system 1973-2015. In L. K. Dillon, W. Visser,
and L. Williams, editors, Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages
748–759. ACM, 2016.

[215] K. Stroggylos and D. Spinellis. Refactoring–does it improve software quality? In
Proceedings of the 5th International Workshop on Software Quality, pages 10–.
IEEE Computer Society, 2007.

[216] G. Szoke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy. Bulk fixing coding
issues and its effects on software quality: Is it worth refactoring? In Source
Code Analysis and Manipulation (SCAM), 2014 IEEE 14th International Working
Conference on, pages 95–104. IEEE, 2014.

[217] A. Takang, P. Grubb, and R. Macredie. The effects of comments and iden-
tifier names on program comprehensibility: an experiential study. Journal of
Programming Languages, 4(3):143–167. 1996.

186 BIBLIOGRAPHY

[218] M. Thongmak and P. Muenchaisri. Measuring understandability of aspect-oriented
code. In International Conference on Digital Information and Communication
Technology and Its Applications, pages 43–54. Springer, 2011.

[219] M. K. Thota, F. H. Shajin, P. Rajesh, et al. Survey on software defect prediction
techniques. International Journal of Applied Science and Engineering, 17(4):331–
344. Chaoyang University of Technology, 2020.

[220] A. Trockman, K. Cates, M. Mozina, T. Nguyen, C. Kästner, and B. Vasilescu.
Automatically assessing code understandability reanalyzed: combined metrics
matter. In Proceedings of the 15th International Conference on Mining Software
Repositories, pages 314–318. ACM, 2018.

[221] N. Tsantalis and A. Chatzigeorgiou. Identification of move method refactoring
opportunities. IEEE Transactions on Software Engineering, 35(3):347–367. 2009.

[222] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig. Accurate
and efficient refactoring detection in commit history. In Proceedings of the 40th
International Conference on Software Engineering, pages 483–494, 2018.

[223] N. Tsantalis, D. Mazinanian, and S. Rostami. Clone refactoring with lambda
expressions. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages 60–70,
2017.

[224] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk. When and why your code starts to smell bad (and whether the
smells go away). IEEE Transactions on Software Engineering, 43(11):1063–1088.
IEEE, 2017.

[225] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk. On learning
meaningful code changes via neural machine translation. In Proceedings of the 41st
International Conference on Software Engineering, ICSE 2019, pages 25–36, 2019.

[226] P. A. Tun and M. E. Lachman. Telephone assessment of cognitive function
in adulthood: the brief test of adult cognition by telephone. Age and Ageing,
35(6):629–632. Oxford University Press, 2006.

[227] A. Van Deursen, L. Moonen, A. Bergh, and G. Kok. Refactoring test code.
Technical report, Amsterdam, 2001.

[228] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand. By no means: a study
on aggregating software metrics. In G. Concas, E. D. Tempero, H. Zhang, and
M. D. Penta, editors, Proceedings of the 2nd International Workshop on Emerging
Trends in Software Metrics, WETSoM 2011, Waikiki, Honolulu, HI, USA, May
24, 2011, pages 23–26. ACM, 2011.

BIBLIOGRAPHY 187

[229] C. Vassallo, G. Grano, F. Palomba, H. Gall, and A. Bacchelli. A large-scale
empirical exploration on refactoring activities in open source software projects.
Science of Computer Programming, 180(1):1–15. 2019.

[230] H. Wang, J. Fan, and Y. Yang. Toward a multilevel analysis of human attentional
networks. In Proceedings of the Annual Meeting of the Cognitive Science Society,
2004.

[231] Y. Wang. What motivate software engineers to refactor source code? evidences
from professional developers. In Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, pages 413 –416, 2009.

[232] B. Weaver, M. Bédard, and J. McAuliffe. Evaluation of a 10-minute version of the
attention network test. The Clinical Neuropsychologist, 27(8):1281–1299. Taylor
& Francis, 2013.

[233] B. Weaver, M. Bedard, J. McAuliffe, and M. Parkkari. Using the attention network
test to predict driving test scores. Accident Analysis & Prevention, 41(1):76–83.
Elsevier, 2009.

[234] W. Wei, H. Yuan, C. Chen, and X. Zhou. Cognitive correlates of performance in
advanced mathematics. British Journal of Educational Psychology, 82(1):157–181.
Wiley Online Library, 2012.

[235] E. J. Weyuker. Evaluating software complexity measures. IEEE transactions on
Software Engineering, 14(9):1357–1365. IEEE, 1988.

[236] F. Wilcoxon. Individual comparisons by ranking methods. biometrics bulletin 1, 6
(1945), 80–83. URL http://www. jstor. org/stable/3001968. 1945.

[237] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The dstar method for effective software
fault localization. IEEE Transactions on Reliability, 63(1):290–308. IEEE, 2013.

[238] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test set
minimization on fault detection effectiveness. Software: Practice and Experience,
28(4):347–369. Wiley Online Library, 1998.

[239] E. Woumans, E. Ceuleers, L. Van der Linden, A. Szmalec, and W. Duyck. Verbal
and nonverbal cognitive control in bilinguals and interpreters. Journal of Exper-
imental Psychology: Learning, Memory, and Cognition, 41(5):1579. American
Psychological Association, 2015.

[240] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. D. Penta. Recommending
when design technical debt should be self-admitted. In 2017 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2017, Shanghai,
China, September 17-22, 2017, pages 216–226. IEEE Computer Society, 2017.

[241] F. Zampetti, A. Serebrenik, and M. D. Penta. Was self-admitted technical debt
removal a real removal?: an in-depth perspective. In A. Zaidman, Y. Kamei,
and E. Hill, editors, Proceedings of the 15th International Conference on Mining

188 BIBLIOGRAPHY

Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, pages
526–536. ACM, 2018.

[242] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan. An empirical study on factors
impacting bug fixing time. In 2012 19th Working conference on reverse engineering,
pages 225–234. IEEE, 2012.

[243] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang. Refactoring android
java code for on-demand computation offloading. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, pages 233–248, 2012.

[244] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact of
continuous integration on other software development practices: a large-scale
empirical study. In Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering, pages 60–71. IEEE Press, 2017.

[245] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In
Proceedings of the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering,
pages 91–100, 2009.

