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Abstract—Reading source code occupies most of developer’s
daily activities. Any maintenance and evolution task requires
developers to read and understand the code they are going
to modify. For this reason, previous research focused on the
definition of techniques to automatically assess the readability of a
given snippet. However, when many unreadable code sections are
detected, developers might be required to manually modify them
all to improve their readability. While existing approaches aim
at solving specific readability-related issues, such as improving
variable names or fixing styling issues, there is still no approach to
automatically suggest which actions should be taken to improve
code readability.

In this paper, we define the first holistic readability-improving
approach. As a first contribution, we introduce a methodology
for automatically identifying readability-improving commits, and
we use it to build a large dataset of 122k commits by mining
the whole revision history of all the projects hosted on GitHub
between 2015 and 2022. We show that such a methodology has
∼86% accuracy. As a second contribution, we train and test the
T5 model to emulate what developers did to improve readability.
We show that our model achieves a perfect prediction accuracy
between 21% and 28%. The results of a manual evaluation we
performed on 500 predictions shows that when the model does
not change the behavior of the input and it applies changes (34%
of the cases), in the large majority of the cases (79.4%) it allows
to improve code readability.

Index Terms—code readability, large language models, t5

I. INTRODUCTION

Software developers spend much of their time reading and
understanding code. In fact, the majority of software evolution
and maintenance time (and, therefore, budget) is devoted to
such an activity [10], [33]. Unfortunately, however, some
software projects contain a large quantity of unreadable code
[37]. Given the relevance of the problem, previous work aimed
at defining models to automatically assess the code readability
[4], [5], [9], [32], [38], [43], [44]. While detecting unreadable
code is beneficial to developers, the problem of having unread-
able code remains, unless someone improves such artifacts.
Developers, indeed, are left with a hard choice: Taking the
burden of manually improving the readability of unreadable
code, spending precious time in doing so, or keeping it as
is, accruing technical debt that they will inevitably pay in
the future. Automatically improving code readability might be
highly beneficial to developers since it would allow them to
reduce the technical debt of their software systems at a lower
cost. Several tools are available to help developers in this task.
For example, IDEs provide formatters that automatically adjust
the indentation and automatically fix the most basic formatting
errors (e.g., whitespace-related ones). Also, previous work

presented approaches aimed at improving aspects naturally
related to code readability, like styling [25] and naming [1],
[24], [46]. Still, to the best of our knowledge, no previous
work introduced an approach specifically aimed at improving
code readability as a whole.

Ideally, such an approach would take as input a snippet
s with readability-related issues and return a new version
of s (s∗) without such issues. A viable solution is using
Deep Learning (DL) and, specifically, Large Language Models
(LLMs). LLMs have been successfully adopted for several
coding task, like automated bug fixing and generation of as-
sertion statements for test cases [28]. To use such approaches,
however, plenty of pairs (s, s∗) are needed to fine tune the
model. Manually defining an adequately large dataset is not
an option because of the colossal amount of work required.

In this regard, software repositories might be a valuable
source of information. Developers improve code readability in
the evolution of open-source software projects all the time. Let
us consider as an example commit 3acfc16 from the GitHub
repository RoboJackets/roboracing-software [41].
The commit message, “Made the code readable,” clearly states
the developer’s intention. Automatically collecting such com-
mits would allow us to fine tune a LLM able to automatically
improve code readability. Still, this is not an easy task. A
simple keyword-based approach would not work, because the
word “readability” is used in a variety of contexts: It could be
related not only to code, but also to the output formatting (e.g.,
logging) or to GUI-related elements (e.g., font readability).

In this paper, we define the first holistic DL-based approach
for automatically improving code readability. Our approach
does not require humans to manually improve the readability
of code snippets. As a first contribution, we define a novel
methodology for automatically selecting readability-improving
commits through a set of heuristics, including a novel NLP-
based filter. We use it to mine the whole history of GitHub
between Jan 2015 and Dec 2022. As a result, we obtain
122k code-readability improvement operations. We manually
analyzed a significant sample of such commits to validate our
approach, and we found that 86% of the selected commits
actually aim at improving code readability. As a second
contribution, we use our dataset to fine-tune and test a LLM to
automatically improve code readability. To do this, we fine-
tune T5, a state-of-the-art LLM used for other coding tasks
[28]. Our results show that our model achieves an accuracy
level between 21% (if only a single prediction is provided) and
28% (when providing up to 50 alternatives to the developers).



We also manually investigated a significant sample of 500
predictions to understand if (i) the model does not change
the behavior of the input code, and (ii) it actually improves
code readability, regardless of the fact that it perfectly matches
what developers did. We found that the model tries to improve
code readability (i.e., it does not change the behavior of the
code and it modifies the input code) in 34% of the instances,
mostly because for many non-perfect predictions (47%) it
does not change the input code at all. When checking the
capability of the model of actually improving readability when
considering changes in which behavior does not change and
the model modifies the input code, we found that 83% of
perfect predictions and 75% of non-perfect predictions have
a positive effect on readability. In summary, our results show
that not only the model improves readability, but it is generally
safe to use since it changes the behavior of the input code in
a minority of the cases (31%).

II. RELATED WORK

In this section, we report both previous studies on code
readability and deep-learning approaches defined to improve
code-related features.

A. Code Readability

Erlikh et al. [10] showed that developers spend more time
in maintenance activities than on development activities. For
this reason, previous work aimed at defining approaches for
automatically assessing code readability. Buse and Weimer
[4], [5] introduced the first approach for achieving this goal
through a set of structural features (e.g., line length and
identifier length). Later, Posnett et al. [38] defined a sim-
pler model for code readability by using only three metrics
(Halstead volume, entropy, and LOC). Dorn [9] contributed
by introducing a very large dataset of manually-evaluated
snippets in three programming languages, and he presented
a new model including visual, spatial, and linguistic features
(e.g., alignment of characters and indentation variation) that
allow to achieve higher prediction accuracy. Scalabrino et al.
[43], [44] introduced a set of textual features (e.g., consistency
between comments and identifiers and comment readability)
and defined a comprehensive model including all the state-of-
the-art features. Finally, Mi et al. [32] used for the first time
deep-learning to predict code readability.

Readability prediction models, however, have been proved
to have some limits in capturing readability improvements
made by developers. Pantiuchina et al. [34] empirically in-
vestigated whether quality metrics were able to capture code
quality improvement as perceived by developers. Authors
performed an investigation on 1,282 commits with only Java
files. They analyzed Java files to understand if the developers
really improved code readability. Authors mined commits
in which developers clearly stated their aim of improving
code readability. Results demonstrated that more often the
considered quality metrics were not able to capture the quality
improvement as perceived by developers. Fakhoury et al. [11]
consolidated the results obtained by Pantiuchina et al. [34].

Fakhoury et al. investigated ∼63 project with readability
models and their results showed that readability models failed
to capture readability improvements. Pantiuchina et al. [34]
and Fakhoury et al. [11] introduced dataset including commits
where developers explicitly stated readability improvements.
Finally, Piantadosi et al. [37] showed that such models are
much less accurate when used to predict if a commit changed
the readability of a file. In all these studies, manual validation
of the readability-improvement commits acquired was required
because they used a simple keyword-matching approach to
select readability-improving commits. As a result, their dataset
contain few commits: The one by Pantiuchina et al. contain
a total of 1,282 changes (including the ones related to other
quality metrics), while the one by Fakhoury et al. contains
548 instances [11], and they both focused only on Java. Our
approach for selecting readability-improving commits auto-
matically discards possible false-positives identified through
keyword-matching thanks to a NLP-based filter and other
heuristics. In total, our dataset contains more than 122k
readability-improving commits.

B. Deep Learning to Improve Code

In recent years, the use of deep learning (DL), thanks in part
to the advent of LLMs (large language models), has become a
very effective technique for coding tasks. Although there are
plenty studies concerning the use of DL for coding tasks, we
focus only on a few of them. A broader overview is available
in the surveys by Allamanis et al. [2], Watson et al. [54], and
Yang et al. [56].

One of the pioneering studies on the bug fixing through
DL is the one of Tufano et al. [48]. The authors collected
∼787k commits, abstracted the buggy code and fixed code,
and used them to train an Encoder-Decoder model able to
translate buggy code into its fixed version founding that such
a model was able to fix thousands of unique buggy methods.

Watson et al. [55] introduced ATLAS (Automatic Learning
of Assert Statements), the first approach to generate assert
statements in test methods. The authors mined 2.5M test meth-
ods from GitHub with their corresponding assert statement.
The model was capable of successfully predicting over 31%
of the assert statements developers wrote.

Raffel et al. [40] introduced T5 (Text-To-Text Transfer
Transformer) in the field of Natural Language Processing.
T5 allows to pre-train a model in a self-supervised way, and
then to fine-tune it on the specific task. Mastropaolo et al.
[28], [29] used T5 for coding tasks, and they showed that it
allows to improve the state-of-the-art models for automated
bug fixing [48], code summarization [14], assert generation
[55], and mutant generation [47].

Ciniselli et al. [8] presented a large-scale study with the
aim of exploring the capabilities of Transformers [50] on
code completion of three different granularity levels: single
tokens, one or multiple statements, and code blocks. They
achieved a level of perfect predictions ranging from ∼29%
(block prediction) to ∼69% (token prediction).
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Fig. 1: Process used for building the dataset.

Tufano et al. [49] investigated the possibility of automating
specific code review tasks through the use of DL models
targeting the automation of two tasks: (i) take in input a code
submitted for review and implement in it changes likely to be
recommended by a reviewer, (ii) take in input the submitted
code and a reviewer comment posted in natural language and
automatically implements the change required by the reviewer.

Despite the large amount of tasks on which DL models
have been tested, to the best of our knowledge, there is still no
approach aimed to improve code readability, probably because
of the lack of a dataset. More generally, most studies of
the application of DL on source code have not focused on
improving its quality. We advance the state of the art by
introducing a dataset of code readability improvement changes
experimenting to what extent DL can be used for this task.

III. EXTRACTING READABILITY IMPROVING COMMITS

In this section, we present our methodology to build a
dataset of readability-improving commits. To do this, we
rely on the information provided by developers in commit
messages. The first assumption on which our methodology
relies is that commit messages reflect the developer’s intention:
If developers say they are improving code readability, we
assume that their intention is to do so. The second assumption
is that developers know how to improve code readability:
If developer’s intention is to improve code readability, the
modification makes the code (even slightly) more readable.
Both such assumptions were frequently used in previous work.
For example, the SZZ algorithm [45] relies on information
provided by developers to get the bug-inducing commits from
a given issue. Our goal is not to select all the commits that
improve code readability. Instead, since our final objective
is to train a readability-improving model, we want that the
commits we select actually improve code readability, to avoid
misleading the model during training. In other words, we want
to have high precision, but not necessarily high recall.

To build our dataset, we rely on GitHub Archive [13].
We extract a first set of candidate commits through keyword
matching. Then, we apply several filters (including an NLP-
based filter on commit messages) to discard false positives. A
summary of the methodology we used is depicted in Fig. 1.

A. Step 1: Extracting Candidate Commits

As a first step, we want to select a set of commits that
might aim at improving code readability. To do this, we
mined GitHub Archive [13], a service which archives all the
events occurring on GitHub, one of the most popular coding
platforms. Specifically, we are interested in the PushEvents,
i.e., the events occurring when a developer pushes their local
commits to the remote repositories on GitHub.

Such events include, among other metadata, the list of
pushed commits with their IDs and messages. At this stage, we
only rely on the commit message to find candidate readability-
improving commits by using a simple keyword-based ap-
proach. Several keywords might indicate that a commit aims
at improving code readability (e.g., “readability”, “cleanup”,
“formatting”). However, after a preliminary analysis, we no-
ticed that some of them result in very noisy samples, i.e., they
mostly select commits that do not (or do not only) improve
code readability. For example, the word “formatting” is in-
cluded in the commit message of bc685 from the repository
needle-and-thread/vocal [52], in which developers
remove translation formatting. In this and other cases, the
change is not related at all with code readability improvement.
The best way we found to get a sample with a reduced amount
of false positives was to include only commits explicitly
referring to readability. Therefore, we only kept commits
including “readab” (i.e., “readable”, “readability”, ...). This
is in line with what was done in previous work [34]. We
also noticed that, in some cases, the messages indicated that
many different modifications were made, leading to tangled
commits [16], [20]. This is particularly evident for “squash
merges”, i.e., commits that summarize several commits on a
given branch and that include the commit messages of all such
commits by default. To reduce the risk of selecting tangled
commits, we applied a filter to the commit message length.
We kept only commits with less than 150 character.

B. Step 2: NLP-Based Filter
While keyword matching helps us selecting a good can-

didate set of commits, it also results in the inclusion
of many false-positives. For example, in the repository
chelseacastelli/checklist, commit 08cdb [6], the
developer improves the readability of the console output
through the addition of coloring and text clearing. Such a
modification changes a functionality instead of improving code
readability. To discard false positives, we use an NLP-Based
filter on the candidate commits selected after Step 1. Such a
heuristic was inspired by the procedure used in previous work
[42] and it was built through trial and error by manually testing
it on a sample of commits filtered after Step 1.

The final heuristic we defined is based on a simple premise:
We want to identify commit messages in which the term
indicating readability is related to another term indicating
improvement or to a term explicitly referring to a code
element. We use the SpaCy [17] Python module for NLP
to achieve this goal. First, we extract the sentences (Sm)
from the commit message m. Also in this case, to reduce the
risk of including tangled commits, we excluded commits with
more than five sentences. Readability is often used to express
properties of elements other than the source code. Therefore,
we explicitly excluded commits related to GUI components
(e.g., readability of a web page) or to console printing (e.g.,
readability of log messages)1.

1The complete list of words we excluded is the following: “output”,
“notification”, “doc”, “user”, “human”
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“Increased fontsize in whitebox-level-1, so image becomes
more readable in printout”

At this point, we defined three sets including the lemmas
of the keywords of interest: Kr, including lemmas regarding
the concept of readability, Ki, including lemmas regarding the
concept of improvement, and Kc, including lemmas regarding
code-related elements. Kr contains only “readab”. Ki in-
cludes, instead, “improv” (e.g., improved), “refact” (e.g., refac-
toring), “enhanc” (e.g., enhancement), “chang” (e.g., change),
“tweak”, “keep”, “increas” (e.g., increase), “optim” (e.g., op-
timized). Finally, Kc includes “code”, “function”, “variabl”
(e.g., variables), “statement”, “line”, “comment”, “parameter”,
“instruct” (e.g., instruction).

For each sentence si ∈ Sm we used SpaCy to extract
its word dependency tree ti, which contains the syntactic
relationships among the words composing the sentence. Based
on the three sets Kr, Ki, and Kc, we mark all the words
in ti as readability-related (if matching any word in Kr),
improvement-related (if matching any word in Ki), code-
related (if matching any word in Kc), or other. We transform
the dependency tree (ti) in a directed acyclic graph (dag i) in
which an edge from node a to node b represents that b depends
on a. If dagi contains at least a path from any readability-
related word to any improvement-related or code-related word,
we keep the commit including such a sentence. If no sentence
of a commit satisfies this condition, we discard it.

An example of word dependency tree for the sentence
“Minor refactor for readability” is depicted in Fig. 2. In this
example, the word “refactor” is marked as an improvement-
related word, while the word “readability” is marked as a
readability-related word. Since it exists a path that connects
the two words (passing through the word “for”), we keep this
commit. Another example is shown in Fig. 3 for the sentence
“Increased fontsize in whitebox-level-1, so image becomes
more readable in printout”. In this case, there is no path
connecting the readability-related word (“readable”) and the
improvement-related word (i.e., “increased”), which, indeed,
refers to the font size rather than to code readability.

C. Step 3: File-Based Filter
The modifications made by developers to the repository

files with a given commit constitutes an important piece of
information that allows to further exclude commits that most
likely did not aim at improving code readability. To acquire the
list of modified files in each commit and the related patch, we
use the official GitHub REST APIs [12]. Based on such a piece
of information, we defined three strategies. In first strategy,
we remove commits that change too many files (most likely
tangled). To do this, we keep only commits that modify five or
less files, as done in previous work [34]. In the second strategy,
we discard commits that do not modify source-code files. We
look at the names of the files modified in a given commit
and we keep it only if it modifies at least a file containing
source code. To detect if a file contains source code, we simply
rely on its file extension. Specifically, we keep a commit if
the extension of at least a modified file is included in a list
of extensions related to the 10 most popular programming
languages according to GitHut [3]2.

D. Step 4: Collecting Readability-Improving Modifications
For each commit c selected after Step 3, we download

the version of each file modified in c both before and after
the commit. We discard added and removed files (i.e., we
only keep modified files). Finally, we use the GitHub REST
API [12] to get the main programming language of each
repository included in our dataset and, later, we assign such a
programming language to all the commits. We remove from
our dataset all the commit that do not exist anymore in the
repositories and, similarly, all the repositories that can not be
found anymore (i.e., deleted, renamed, or made private).

We executed the whole procedure on the history of GitHub
between 2015-01-01 and 2022-12-31. In total, we acquired
122,045 readability-improving commits, totaling 156,348 file
changes. Table I reports the number of commits and files for
each year analyzed after each step of the our methodology.
As it can be noticed, the number of readability-improving
commits clearly grows in time, as it generally grows the
number of commits on the whole GitHub platform. Also,
the number of commits drastically reduces after each step.
In total, ∼84% of the commits selected with the simple
keyword matching (Step 1) gets discarded, as a result of the
conservative approach we used.

We made our dataset publicly available [51]. It includes
not only the final result (i.e., the modified files), but also
the relevant metadata (e.g., name of the repository or commit
author). We also release the scripts we used to build it so that
researchers and practitioners can use them in the future to
independently update the dataset (e.g., to increase the training
set for the model).

IV. AUTOMATICALLY IMPROVING CODE READABILITY

In this section, we describe our methodology we used to
train a deep-learning model (T5 [40]) to automatically improve
code readability.

2As for June 2021, when we started defining this heuristic.



TABLE I: Commits and files in time for each step.

Year # Commits # Files
Step 1 Step 2 Step 3 Step 4 Step 3 Step 4

2015 57,203 19,644 7,700 7,481 10,184 9,765
2016 67,007 23,225 9,597 9,301 12,723 12,185
2017 79,947 28,574 12,217 11,854 16,319 15,685
2018 86,869 31,883 13,789 13,458 18,509 17,837
2019 99,666 36,340 16,118 15,662 21,800 20,909
2020 121,019 45,621 20,689 20,253 27,926 26,959
2021 111,907 44,073 21,246 20,919 28,346 27,521
2022 126,711 50,124 24,243 23,117 30,684 25,487

Total 750,329 279,484 125,599 122,045 166,491 156,348

As a first step, given the modifications made by developers,
we find matching pairs of code (before and after the modi-
fication), filter them, and tokenize the code so that it can be
treated by the model. Then, we use such a dataset to tune,
train, and test the model.

A. Datasets Definition

The dataset we built in Section III contains commits in
which developers explicitly say that they improved code
readability. However, such a dataset needs to be adapted to be
used to train and test a machine learning model. We describe
below the steps taken to achieve this goal.

Extracting Sub-Operations. A readability-improvement
commit might change several files and, in each file, several
lines of code. However, differently from bug fixing and
refactoring operations, modifications aimed at improving code
readability are intrinsically local. To fix a bug, a developer
might change two classes, and such changes are dependent
one from another. When improving readability, it is more likely
that each change is independent from the other. For example,
adding whitespaces before and after an operator improves code
readability, if they are missing. While this operation could
be repeated several times, it might be preferable to provide
the model with examples easier to handle, from which it
could more effectively learn how to achieve this goal. For
example, let us consider commit a7e6f of the repository
perilstar/roomy [36]. In this case, the same operation
(the local variable cg was renamed in channelGroup) is
performed in two different contexts. Our basic assumption is
that readability improvement is achieved by means of small,
local improvements. Therefore, the first step needed to define
a dataset that a deep-learning approach can handle consists
in the identification of such simpler operations. In this work,
we extract them by using a simple heuristic. We first compute
the diff between the version before and after the readability-
improving commit. Then, we identify all the local modification
sequences that involve up to 10 lines of code, and we take
the two versions before and after the change. We discard all
the changes occurred on files that do not match the target
programming language. Since we are interested in building a
model for Java, we only take into account files with extension
“.java”. The instances include not only the changed lines, but
also 2 lines (at most) of context both before and after the
modified lines.

Tokenization and Abstraction. To treat textual input/out-
put in the T5 model, we need to tokenize it, i.e., to split it in
subsequences of characters. To achieve this goal, we use Sen-
tencePiece [21], an unsupervised technique that automatically
detects recurring tokens. We also defined special tokens to
abstract the input/output sequences (thus making the problem
easier to solve). First, we replaced sequences of whitespaces
before any instruction with a special ▷INDENTATION◁
token. Second, we replaced each remaining whitespace with a
▷WHITESPACE◁ token: We do this to force the model taking
into account such elements, which in most of the other tasks
(e.g., bug fixing) are irrelevant. Third, we abstracted strings
and numbers with ▷STRING◁ and ▷NUMBER◁ tokens, re-
spectively: We do this because the specific strings/numbers
might have a limited impact on code readability. We do not
abstract other tokens (e.g., identifiers and comments), instead,
since they are important for readability [43].

Collecting and Splitting the Dataset. The dataset we
built as described in Section III contains readability-improving
commits in several programming languages. Different pro-
gramming languages have different keywords, coding conven-
tions, and syntax. Therefore, it is necessary to instantiate the
model on each of them. In this work, we aim at building a
model for Java. We choose such a programming language for
several reasons. First, it is one of the most commonly used
languages by developers and in software engineering studies
[7], [14], [18], [22], [23], [29], [31], [48], [55]; second, it is
one of the languages for which we have the largest amount
of examples from our dataset (∼23k file modifications); third,
the model we aim to use (T5) is pre-trained with Java code
examples, and this allows us to partially re-use such a model.
Given the readability-improving commits from the Java repos-
itories, we run the previously described steps. Additionally,
to have a high-quality dataset, we removed all instances that
contain (i) package or import in the first 20 characters, to
avoid making the model learn trivial operations regarding such
elements; (ii) modification of TODO comments, which imply
that new code was introduced; (iii) empty code either before
or after the change, which indicate that new code was added
or unneeded code was removed. Note that the abstraction step
could result in making some instances useless: If, for example,
the change regards a string, the before and after version of the
instance are equal since both the concrete strings are replaced
with a ▷STRING◁ token. We remove those instances. We
also remove too trivial instances (i.e., the ones with less than
10 tokens either before or after the change) and too long ones
(i.e., with more than 512 because we set this as maximum
number of tokens for T5 as done in other work [28], [49]).
Finally, we handled the cases in which different instances have
either the same before or the after values. Having, for example,
two instances for which the before is equal but the after is
different might confuse the model since it can not understand
which operation it has to perform. In those cases, we only
keep one instance for each group, i.e., the one for which the
edit-distance between the before and after versions is lower.



After having acquired and abstracted pairs of sequences be-
fore and after the readability-improving modification, we end
up with 31,183 instances. We randomly split such instances in
three sets, following the procedures and the proportions used
in previous work [29]. Most of the dataset (24,945 instances,
i.e., 80% of the total) is used as a training set (Dft) to fine-
tune the model. Half of the remaining instances (3,119, i.e.,
10% of the total) are used as the validation set (De) for hyper-
parameter tuning, while the other half (again, 3,119 instances,
i.e., 10% of the total) are used as the test set (Dt) for our
study.

B. Training Procedure of T5

Raffel et al. [40] introduced the T5 model in the domain
of Natural Language Processing. This approach is based on
two phases: pre-training, which allows building a language
model useful to address different downstream tasks, and fine-
tuning, which specializes the model to perform a concrete
task. Mastropaolo et al. [28], [29] showed that T5 allows
to achieve state-of-the-art results for four different coding
tasks. For this reason, we decided to use such a model for
our specific coding task (readability improvement). We report
below the procedures we used for pre-training the model,
tuning the hyper-parameters, and fine-tuning it for improving
code readability.

Pre-training. Since Mastropaolo et al. [29] already pre-
trained the model for coding-tasks, we did not repeat such a
phase for our task. In the original work [29], the pre-training
was done on the CodeSearchNet dataset, including both source
code (∼1.5M methods written in Java) and natural language
sentences (499,618 sentences from the documentation of the
methods). In total, the model was pre-trained on 2,984,627
instances.

Fine-tuning. We used the training set built as previously
described to fine-tune the T5 model and, therefore, to obtain
our readability-improvement model. We fine-tuned the model
for 500k steps. In total, this phase took about ∼5 days of
training on a Google Colab instance. We adopted the early
stopping strategy [39] with the aim of avoiding overfitting.
Specifically, every 10,000 fine-tuning steps, we evaluated
the accuracy and took the best model before the accuracy
decreased.

Decoding Strategy. The output layer of the T5 model needs
to be decoded to provide the final output sequence(s). We
use beam-search as a decoding strategy. When generating the
output sequence, a beam-search strategy of order K keeps K
hypotheses, i.e., the K sequences of output tokens with the
highest probability. Therefore, such a strategy will provide K
token sequences. As also noted by Mastropaolo et al. [29], this
is compatible with what developers might expect from a model
that allows to address coding tasks. For example, the code
completion feature provided by IDEs typically recommends
many alternatives. This is particularly true for code readability,
which is subjective by nature and for which no single solution
might necessarily exist.

TABLE II: Types of learning rate used for hyper-parameter
tuning, the respective parameter values, and the results.

Learning Rate Type Parameters Accuracy@1 BLEU-A

Constant LR = 0.001 7.9% 0.53

Inverse Square Root (ISR) LRstarting = 0.01 13.8% 0.67
Warmup = 10 000

Slanted Triangular (ST) LRstarting = 0.001 18.2% 0.75
LRmax = 0.01
Ratio = 32
Cut = 0.1

Polynomial Decay (PD) LRstarting = 0.01 8.6% 0.54
LRend = 0.001
Power = 0.5

Hyper-parameter tuning. To tune the hyper-parameters of
the model, we tested it with four different types of learning
rates, similarly to previous work [28]: (i) Constant Learning
Rate, which consists in keeping the learning rate constant
at a given LR value throughout the training; (ii) Inverse
Square Root Learning Rate (ISR), which keeps the learning
rate constant at LRstarting for Warmup steps, and then it
makes it decay as the inverse square root of the training step;
(iii) Slanted Triangular Learning Rate (ST), which consists in
starting from LRstarting, linearly increase it up to LRmax,
after which it starts to linearly decrease; (iv) Polynomial
Decay Learning Rate (PD), through which the learning decays
polynomially from an initial value LRstarting to a final value
LRend. We used the values reported in Table II.

We tuned the model for a total of 100k steps for each
strategy, and we tested it on the validation set of our dataset.
For each final model, we computed the effectiveness through
two metrics: (i) Accuracy@1, which computes the percentage
of perfect predictions, i.e., cases in which a model using beam-
search of order 1 as a decoding strategy is able to generate
exactly the expected output; (ii) BLEU-A score [35], which
measures the similarity between the expected output and the
actual output in the [0, 1] range. We provide more precise
definition for such metrics in Section VI.

Table II reports the results. The Slanted Triangular Learning
Rate (ST) allows to achieve the best results for both the
metrics. This result agrees with previous results on different
coding tasks [28], [29]. Thus, we decided to use this learning
rate strategy in our model.

V. STUDY 1: DATASET RELIABILITY

The goal of our first study is to validate the methodology
we defined to automatically retrieve readability-improving
commits and, therefore, the dataset we defined. This study
is steered by the following research question:

RQ1: How precise is our approach in identifying
readability-improving commits? With our research question,
we want to find out to what extent the defined dataset is
reliable, i.e., how many false-positives it wrongly selects.

A. Context Selection

To validate the dataset, we randomly selected a significant
sample of modifications of any programming language.



The sample size we chose is 500 commits from our dataset,
since this allows us to have a representative sample of our
dataset: With a confidence level of 95%, the expected margin
of error is ±4.38. For each commit, we extracted (i) the link
to the GitHub page showing the diff of the commit and (ii)
the commit message.

B. Experimental Procedure

To answer RQ1, three of the authors evaluated all the
instances, aiming at assessing if the commit was about code
readability improvement or not. To do this, we first equally
divided the 500 selected commits in three bins, two of which
with 167 instances and one with 166. Then, we assigned
each evaluator with two bins, so that each evaluator had
two different bins of instances to evaluate. This ensured that
each instances was always reviewed by two evaluators. Each
evaluator independently analyzed their own instances and
reported, for each of them, “Yes” if the commit was improving
readability and “No” otherwise. After the independent eval-
uation, we merged all the evaluations and we checked the
disagreements. All the evaluators discussed such cases to reach
a consensus.

To evaluate the instances (both in the first and second phase)
we relied on the commit message and on the code diff. If the
code modification did not only change the source code, but
also the behavior of the code (e.g., fixed a bug), regardless
of the fact that this was mentioned in the commit message,
we marked the commit as non-readability-improvement. We
preliminarily set commits as “non-readability-improvement”
when the message clearly indicated that the improvement was
not related to code readability (e.g., “improved web page
readability”). We discarded commits that were not available
anymore for at least one of the evaluators at the time of
the evaluation. It is worth noting that our aim was not to
check if the change actually improved readability, but rather
if the intention of the developers was to do so. Therefore, we
did not arbitrarily judge as “non-readability-improvement” the
commits for which we personally believed that the change was
not improving code readability.

We report the percentage of instances correctly improving
code readability and we discuss cases in which our approach
incorrectly included other commits.

C. Results

We discarded 7 instances that were not available on GitHub
at the time of the evaluation for at least one of the evaluators.
This lead to a total of 493 evaluated instances (986 evaluations,
in total). The evaluators disagreed on 86 instances, which
were carefully reviewed by the three evaluators in a meeting.
In total, the evaluators agreed that 426 instances out of
493 were represented by readability-improvement commits
(86.4%). Since the actual sample we selected is smaller, we
re-computed a-posteriori the expected margin of error, which
is slightly higher (±4.4). Therefore, we can conclude that
the percentage of actual readability-improving commits in our
dataset is between 82% and 90.8% (95% confidence level).

D. Discussion

We discuss below the main causes for which our approach
wrongly included commits that do not regard code readability.

Ambiguous commit message. Almost all the commit
messages (included the false positives we identified) were
believably related to the improvement of readability. We
were not able to discard almost any commit based only
on the commit message. Let us consider, for example, the
repository HelgeRottmann/r2dbe_software, commit
dba8c [15], with commit message “Various changes to
improve the readability.” Such a note might be reasonably
associated to a commit which aims at improving code read-
ability. Instead, the modifications suggest that the aim of the
developers was to improve the readability of the program
output. The fact that no commit message alone allowed us
to directly mark a commit as a false-positive shows that the
NLP heuristic we define works as intended. At the same
time, other constraints might be added to make the heuristic
even more conservative. For example, it might be worth
experimenting the introduction of a constraint that forces the
heuristic to select only commits in which readability-related
terms are connected to both improvement related and code-
related terms.

Misleading commit message. Sometimes, the commit mes-
sage is not enough to understand if a commit improves code
readability, and it might even mislead the NLP filter (or even
a human annotator). Let us consider, for example, commit
9612b from the mat2m10/nerdsquad repository [30].
The commit message reports “corrected some styling offenses
& improved code readability.” By reading the message alone,
it is quite clear that the intention of the developers was to
improve code readability. When looking at the modification,
however, it can be noticed that the developer simply added two
blank lines at the end of a file that contains many blank lines
(85). It is quite clear that such a modification does not alter
at all code readability. When looking at the history of such a
repository, we found that most of the commit messages are the
same, with analogous modifications (e.g., added or removed
blank lines at the end of the file). Indeed, our manually
evaluated sample contains 8 of such commits. It might be
worth adding a heuristics to discard trivial changes like this to
improve the accuracy. It is worth noting that adding a blank
line does not increase readability in this specific context (since
it is added at the end of the file), but, in general, the number of
blank lines might affect code readability [4], [5] when added to
separate code blocks. In other words, simply discarding blank
lines is not an option.

Tangled commits. While our approach uses several heuris-
tics for reducing the amount of tangled commits, such commits
still appear in the final dataset. This happens in commit 94b96
from the repository Jaycean/apisix-dashboard [19]
with commit message “Fix bugs and change the readability
of E2E test cases.” While most of the modifications done by
the developer improve code readability, some of them aim at
fixing a bug, i.e., they change the behavior of the program.



While we found that tangled commits are a minority in our
dataset, they might negatively affect the model we aim to build.
Therefore, further heuristics might be added to reduce the
entity of such a problem. For example, commits with messages
including keywords such as “bug” might be discarded.

VI. STUDY 2: READABILITY-IMPROVING MODEL

The goal of our second study is to evaluate our readability-
improvement model. This second study is steered by the
following research questions:

RQ2: How does the proposed model perform compare to DL
models designed to perform other coding tasks? With this first
research question, we aim at exploring how feasible is using
DL (T5, in our case) to automatically improve code readability
by comparing it with the same model used for other coding
tasks.

RQ3: To what extent does the proposed model try to improve
code readability? With this second research question, we want
to understand whether the model tries to improve readability
or it makes other operations that, for example, change the
behavior of the source code.

RQ4: To what extent does the proposed model improve
code readability? With this final research question, we aim
at understanding whether the model actually improves code
readability when it does not change the input code behavior.

A. Experimental Procedure

We use our readability-improvement model defined, trained,
and tuned as reported in Section IV for all the RQs of this
second study.

To answer RQ1, i.e., to provide a rough idea about the
potentiality of our model, we compare its results with the
ones achieved in previous work [28] on other code-related
tasks. More specifically, we compare our model with the T5
models trained and tested by Mastropaolo et al. [28] for tasks
that aim at generating source code. Therefore, we consider for
comparison the following tasks:

• Automated Bug Fixing (BF): Given a buggy version of
the source code as input, the model generates the correct
version as output. There are two BF models, one for small
methods (up to 50 tokens), and one for medium methods
(up to 100 tokens).

• Injection of Code Mutants (MG): Given a correct
version of the source as input, the model generates a
buggy version as output.

• Generation of Asserts in Tests (AG): Given a partial
test case as input, the model generates assert statements
for the test. Results for T5 are available for two models:
one that considers abstracted code, and one that considers
raw code.

While Mastropaolo et al. [28] also consider another coding
task (i.e., Code Summarization), we do not include it in this
comparison since it generates natural language text instead of
code. We compute the following metrics for our model.

Accuracy@K. As previously reported, we use beam-search
as a decoding strategy, with K ∈ {1, 5, 10, 25, 50}.

For a given K, given an input sequence s, a set of
predictions provided by our model ri∗K(s), and the actual
modification performed by developers, ri(s), we say that
a single prediction ri∗K(s) is correct if ri(s) ∈ ri∗K(s),
i.e., one of the predictions is exactly equal to the actual
modification. Accuracy@K is computed as the percentage of
correct predictions for the test set, for a given beam size K.
We compare the results obtained by our model with the ones
obtained for all the other tasks we consider (i.e., BF, AG,
and MG). As for the latter, we only compare the results of
Accuracy@1, which is the only one available [28].

BLEU score. The BLEU-n score (Bilingual Evaluation
Understudy) [35] aims at measuring how similar two texts
(candidate and reference) are. Given a number n, n-grams
are extracted from both the texts, and BLEU computes the
percentage of n-grams from the candidate that appear in
the reference. Such a metric ranges between 0 (candidate
is unrelated with reference) and 1 (candidate is equal to
reference). We compute BLEU-n, with n ∈ {1, 2, 3, 4}, and
we report BLEU-A, i.e., their geometric mean. We compare
the values obtained by our readability-improving model with
the ones obtained for the MG task, i.e., the only one for which
previous work reports such a metric.

To answer RQ2 and RQ3, we manually evaluated a sig-
nificant sample of the predictions performed by our model
composed of 500 instances in total (4.38 margin of error, 95%
confidence level). To this end, we considered both perfect
predictions (127 instances) and non-perfect predictions (373
instances), randomly sampled from the test set. Two of the
authors independently analyzed each instance. They answered
two questions: Q1, i.e., “does the predicted modification try to
improve code readability?” and Q2, i.e., “how does the change
impact code readability?” Q1 is a binary question (“yes” or
“no”): Note that we use “no” to indicate both cases in which
the model changes the behavior of the code (e.g., it introduces
new code) or it does not change the code at all. On the other
hand, Q2 is a 5-point Likert scale question, for which the
evaluators could assign a score from −2 (drastically decreases
readability) to +2 (drastically increases readability). On this
scale, 0 indicates that readability did not significantly change.

A third annotator manually evaluated the cases in which the
two annotators disagreed. In Q1, the two annotators disagreed
when they answered in an opposite way; in Q2, we consider
that the annotators disagreed if one of them assigned a positive
score and the other one assigned a negative score or if one
of them assigned an positive/negative score and the other
one assigned a 0. As for Q1, the third evaluator served as a
tiebreaker: We determine the ground-truth “yes”/“no” answer
by using majority voting. As for Q2, the third evaluator
assigned, again, a subjective score. Regardless of the fact that
there was agreement or not, we define the ground-truth answer
to Q2 by computing the median among the three/two scores
since we are handling an ordinal categorical variable. Note
that while the first two evaluators answered both Q1 and Q2
for all the instances, the third evaluator did not answer Q2
when the majority of answers of Q1 was “no.”



To answer RQ3, we count the percentage of the answers
to Q1, while to answer RQ4 we count both the percentage of
cases for which the final score was greater than 0 (i.e., the
model increased code readability), lower than 0 (the model
decreased readability), and equal to 0 (i.e., the model did not
change code readability). Finally, we plot the distribution of
the scores assigned using a barplot to show to what extent the
model increased/decreased code readability.

B. Results

RQ2: Model Effectiveness. We report in Table III the re-
sults of our model (RI) and the state-of-the-art results obtained
with the same T5 model for the other tasks we consider in our
comparison. In terms of Accuracy@K, readability improve-
ment ranges between 21% (K = 1) and 28% (K = 50).
When comparing the results with the ones obtained with the
same model used for other tasks, it can be noticed that with
K = 1 (i.e., single prediction), our readability improvement
model performs similarly to the others (21% accuracy@1).
When we observe the results obtained with higher values of
K, the accuracy increases less than other models: RI flattens
after K = 5. The difference in terms of accuracy obtained with
K = 5 and K = 50 is very low (only three percentage point).
We can conclude that generating more than 5 alternatives for
code readability improvement unlikely would give developers
practical advantages, as opposed to what happens for other
tasks. In terms of BLEU-A, our model achieves a score of
0.77, which is, again, very similar to the score achieved for
the mutant generation task (0.78).

In summary, our readability-improving model achieves ac-
ceptable results, comparable with the ones achieved by state-
of-the-art models for performing other code-related tasks.

RQ3: Tentative Readability Improvements. Table IV
reports the results of RQ3. The model tries to improve the
readability of the input code in ∼78% for perfect predictions.
The result is much more negative (as it could be expected) for
non-perfect predictions (only 19%). Overall, only 34% of the
predictions actually try to improve code readability. To analyze
more in depth this phenomenon, we specifically distinguished
the cases in which the model changes the behavior (which
might be dangerous for the developers who use the model)
and the ones in which it does not change the code at all
(which do not risk to harm the source code). We found that
for 47% of the non-perfect predictions the model simply
returns the input code although, as described in Section IV,
no pairs with before and after equal were fed into the model.
This means that, overall, our model changes the behavior of
the code in only 31% of the cases. To put this result into
perspective, we manually analyzed the 500 instances using
the same methodology used to answer RQ3 but aiming at
checking in how many instances the original developers tried
to improve readability (similarly to what we did in RQ1).
We found that in 28% of the instances the modifications
made by the developers change the behavior, i.e., they are
not (only) aimed at improving readability. Thus, this behavior
of the model is likely inherited from the noise in the dataset.
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Fig. 4: Distribution of the readability scores assigned.

TABLE III: Results of RQ2, where RI indicates our task.
Missing data (–) indicate that the original work did not report
such a piece of information.

Task Accuracy@K BLEU-A1 5 10 25 50

RI 21% 25% 26% 27% 28% 0.77

BF (small) 10% 36% 44% 55% 60% —
BF (medium) 3% 17% 24% 32% 38% —
AG (abstracted) 34% 53% 58% 63% 66% —
AG (raw) 47% 57% 61% 63% 65% —
MG 28% — — — — 0.78

Finding ways to further remove such commits might result
in better effectiveness of the model. Besides, to reduce the
impact of this behavior and “force” the model to provide
diversified predictions, it would be possible to use different
values for the temperature hyper-parameter. Note that changing
the temperature would have an impact mostly in the scenario in
which a single prediction is considered. This is why we did not
test different temperature levels in our experimental setting (we
already use Beam Search with up to 50 predictions). Anyway,
tuning such a parameter might be crucial in practice, when
only a few suggestions can be presented to developers.

In summary, our readability-improving model should be
used carefully, but it is generally quite reliable and it seldom
changes the behavior of the input code.

RQ4: Actual Readability Improvement. Table IV reports
the number of cases in which we observed an increase/de-
crease in code readability (R+

∼ and R−
∼, respectively) and the

cases in which it does not significantly change (R0
∼) when the

model tries to improve readability. It is quite clear that the
model successfully achieves its goal: It increases readability,
overall, in 79.4% of the cases, and it decreases it in a negligible
percentage of cases (7.1%). These results are clearly higher for
perfect predictions, but not significantly higher. This shows
that even non-perfect predictions, when they do not change
behavior, are valid. We report in Fig. 4 the distribution of
the median scores assigned by the evaluators. Most of the
scores are 1 and 1.5. This shows that some of the suggestions
significantly improve code readability.



TABLE IV: Results of RQ3 and RQ4, where R−
∼, R+

∼, and R0
∼

indicate, respectively, the number of cases in which readability
decreased, increased, and did not change.

RQ3 RQ4

R−
∼ R+

∼ R0
∼

Perfect predictions 78.0% 3.0% 82.8% 14.1%
Non-perfect predictions 19.0% 12.7% 74.6% 12.7%

Overall 34.0% 7.1% 79.4% 13.5%

C. Discussion

Our results show that (i) the model achieves, in merely
numerical terms, results comparable to the state-of-the-art
models that address other coding tasks, (ii) it changes the
behavior in a small percentage of cases, and (iii) when it does
not change the behavior, it improves readability in the large
majority of instances considered.

To understand how the model improves readability, we
further analyzed the 500 instances considered to answer RQ3

and RQ4. We assigned one or more labels to each instance
describing the types of operations performed and we later cat-
egorized them in three classes: structure (e.g., a new variable
has been introduced), identifiers (e.g., renaming variables) and
comments (e.g., added comments). We found that most of the
changes are aimed at modifying the structure (49%), some
of them at improving identifiers (38%) and a few of them
act on the comments (13%). This analysis further explains
why the model sometimes changes the behavior of the input
code: Changing the structure might result in non-equivalent
transformations, especially for LLMs, which do not have
any capability of formally checking the program equivalence.
In addition, it is worth noting that changes related to the
improvement of identifiers and comments have been studied
individually [26], [27]. However, our approach incorporates
both operations, plus other formatting-related ones, and aims at
suggesting when each of them is needed, based on the context.

We show in Fig. 5 an interesting example. The model
recognizes that one of the comments is not necessary in this
context because it contains unused code; thus, it decides to
remove it. It is worth noting that, in this specific case, the
model performed better than the original developer, who tried
to improve readability by further commenting out code (the
System.out.println(entries) statement).

VII. THREATS TO VALIDITY

We report below the threats to the validity of our studies.
Threats to Construct Validity. A possible threat to con-

struct validity regards the fact that, in defining the dataset, we
did not consider the quality of projects, as done in previous
work [34]. This might result in the inclusion of low-quality
samples (as discussed in Section V). We did this because our
assumption is that readability can be improved also in small
projects. Readability improvement operations might be more
frequent at the beginning of a project, while are less frequent
in mature project [37].

//Input sequence
try{

for (String entries : fileContents){
System.out.println(entries);
//entries = entries.replace(""\n"", """"); Debug

Temp disable
String[] orders = entries.split($STRING$);
if(!orders[$NUMBER$].startsWith($STRING$)){

//Prediction
try{

for (String entries : fileContents){
System.out.println(entries);
String[] orders = entries.split($STRING$);
if(!orders[$NUMBER$].startsWith($STRING$)){

Fig. 5: Example of successful readability improvement.

Besides, as described in Section V, our manual analysis of
the dataset shows that most of the commits from our dataset
actually improve readability. Our manual analysis showed the
presence in our dataset of tangled commits, as discussed in
Section V). This might constitute a threat to the validity for
our second study, in which such commits might be included
as instances in the training, validation, and test sets, resulting
in lower performances of the model. In our sample, however,
tangled commits constitute a minority (∼4.2%). We manually
checked the 500 instances used to answer RQ3 and RQ4 to
check the quality of the dataset built to train and test the model.
We found that in 28% of them change the behavior, and they
are more prevalent in non-perfect predictions (30%). Another
possible threat to construct validity regards the definition
of the dataset used to train, tune, and test the T5 model
(Section IV). We included only a subset of the readability-
improving operations extracted from the commits, i.e., the
ones have a limited impact on the code (at most ten lines).
For example, complex refactoring operations might be ignored
since they involve larger code blocks or files. We believe this
is acceptable because specialized tools exist for supporting
developers in refactoring operations [1], [24], some of them
are also included in the IDEs. Finally, a possible limitation is
related to the presence of nonexistent commits in the dataset.
Since we defined the dataset, some commits have became not
available (e.g., they were deleted or the repository does not
exist anymore). In the manually analyzed sample (RQ1), this
happened in 1.4% of the cases.

Threats to Internal Validity. A possible threat to internal
validity can be the presence of human errors in the manual
evaluation in both our studies. To reduce the impact of this
problem, each instance was evaluated by at least two authors.
In case of disagreement, all the authors reviewed again the
instances to reach consensus (RQ1) or a third author made an
additional evaluation (RQ3 and RQ4).

Threats to External Validity. As for the first study, one of
the threat to external validity is due to the choice of program-
ming languages considered. Our dataset contains instances for
10 programming languages. In our second study, we tested our
model for a single programming language, i.e., Java. Using
different programming languages might change the results.



VIII. CONCLUSION AND FUTURE WORK

We defined (i) an automated approach for building a dataset
of readability-improving commits and (ii) trained, for the first
time, a LLM for automatically improving code readability. The
results of our large empirical evaluation performed to validate
both the approaches shows promising results. First, between
82% and 90.8% of the commits in the dataset actually aim
at improving code readability. Second, our model is able to
perfectly mimic how developers improve readability in 21% of
the cases. Our model changes the behavior of the input code in
only 31% of the cases, and, when it does not and it changes the
code, it succeeds improving readability in 79% of the cases.
We publicly release our dataset and all the scripts used to
build it, together with the results of our manual investigations,
to foster future research in this field [51].

In future work, we will first aim at improving the method-
ology we defined to build the dataset to remove as many
false positives as possible by (i) further restricting the query
and (ii) introducing other heuristics based on the results of
our manual analysis. Furthermore, we plan to test additional
LLMs, such as CodeT5 [53]. In the same spirit, we will
compare our approach with ChatGPT: Such a tool can be
asked to improve the readability of an code snippet, but its
effectiveness in this task has never been assessed. Finally,
we will extend our readability improvement approach to other
programming languages (e.g., Python, C, C++) to pave the way
for the implementation of a comprehensive tool for readability
improvement.
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